利用交互式决策树将科学知识整合到机器学习中

Comput. Geosci. Pub Date : 2021-07-24 DOI:10.31223/x5pp75
Thorsten Wagener, F. Pianosi
{"title":"利用交互式决策树将科学知识整合到机器学习中","authors":"Thorsten Wagener, F. Pianosi","doi":"10.31223/x5pp75","DOIUrl":null,"url":null,"abstract":"Decision Trees (DT) is a machine learning method that has been widely used in the environmental sciences to automatically extract patterns from complex and high dimensional data. However, like any data-based method, is hindered by data limitations and potentially physically unrealistic results. We develop interactive DT (iDT) that put the human in the loop and integrate the power of experts’ scientific knowledge with the power of the algorithms to automatically learn patterns from large data. We created a toolbox that contains methods and visualization techniques that allow users to interact with the DT. Users can create new composite variables, manually change the variable and threshold to split, manually prune and group variables based on physical meaning. We demonstrate with three case studies that iDT help experts incorporate their knowledge in the DT models achieving higher interpretability and realism in a physical sense.","PeriodicalId":10649,"journal":{"name":"Comput. Geosci.","volume":"24 1","pages":"105248"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Integrating scientific knowledge into machine learning using interactive decision trees\",\"authors\":\"Thorsten Wagener, F. Pianosi\",\"doi\":\"10.31223/x5pp75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision Trees (DT) is a machine learning method that has been widely used in the environmental sciences to automatically extract patterns from complex and high dimensional data. However, like any data-based method, is hindered by data limitations and potentially physically unrealistic results. We develop interactive DT (iDT) that put the human in the loop and integrate the power of experts’ scientific knowledge with the power of the algorithms to automatically learn patterns from large data. We created a toolbox that contains methods and visualization techniques that allow users to interact with the DT. Users can create new composite variables, manually change the variable and threshold to split, manually prune and group variables based on physical meaning. We demonstrate with three case studies that iDT help experts incorporate their knowledge in the DT models achieving higher interpretability and realism in a physical sense.\",\"PeriodicalId\":10649,\"journal\":{\"name\":\"Comput. Geosci.\",\"volume\":\"24 1\",\"pages\":\"105248\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Geosci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31223/x5pp75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Geosci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31223/x5pp75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

决策树(DT)是一种广泛应用于环境科学的机器学习方法,用于从复杂和高维数据中自动提取模式。然而,像任何基于数据的方法一样,它受到数据限制和潜在的物理上不现实的结果的阻碍。我们开发了交互式DT (iDT),将人置于循环中,并将专家的科学知识的力量与算法的力量相结合,从大数据中自动学习模式。我们创建了一个工具箱,其中包含允许用户与DT交互的方法和可视化技术。用户可以创建新的复合变量,手动更改变量和阈值以进行拆分,手动根据物理含义对变量进行修剪和分组。我们通过三个案例研究证明,iDT可以帮助专家将他们的知识整合到DT模型中,从而在物理意义上实现更高的可解释性和现实性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating scientific knowledge into machine learning using interactive decision trees
Decision Trees (DT) is a machine learning method that has been widely used in the environmental sciences to automatically extract patterns from complex and high dimensional data. However, like any data-based method, is hindered by data limitations and potentially physically unrealistic results. We develop interactive DT (iDT) that put the human in the loop and integrate the power of experts’ scientific knowledge with the power of the algorithms to automatically learn patterns from large data. We created a toolbox that contains methods and visualization techniques that allow users to interact with the DT. Users can create new composite variables, manually change the variable and threshold to split, manually prune and group variables based on physical meaning. We demonstrate with three case studies that iDT help experts incorporate their knowledge in the DT models achieving higher interpretability and realism in a physical sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信