自动驾驶汽车在非结构化城市环境中的路径规划

Anderson Mozart, Gabriel Moraes, Rânik Guidolini, Vinicius B. Cardoso, Thiago Oliveira-Santos, A. D. Souza, C. Badue
{"title":"自动驾驶汽车在非结构化城市环境中的路径规划","authors":"Anderson Mozart, Gabriel Moraes, Rânik Guidolini, Vinicius B. Cardoso, Thiago Oliveira-Santos, A. D. Souza, C. Badue","doi":"10.5220/0010559602900300","DOIUrl":null,"url":null,"abstract":"We present a path planner for unstructured urban environments (PPUE) for self-driving cars. PPUE receives initial and goal poses as input, as well as maps of the environment. It employs a hybrid A* algorithm with two heuristics for generating paths, which are smoothed using Conjugate Gradient optimization. Different from previous works, PPUE uses: (i) an obstacle distance grid-map, instead of an occupancy grid-map, for representing the environment; and (ii) an accurate but simple collision model of the car. We have examined PPUE’s performance experimentally in simulated and real world scenarios. Our results show that PPUE computes smooth and safe paths, which follow the kinematic constraints of the vehicle, fast enough for suitable real world operation. * Senior Member, IEEE","PeriodicalId":6436,"journal":{"name":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","volume":"12 1","pages":"290-300"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Path Planning in Unstructured Urban Environments for Self-driving Cars\",\"authors\":\"Anderson Mozart, Gabriel Moraes, Rânik Guidolini, Vinicius B. Cardoso, Thiago Oliveira-Santos, A. D. Souza, C. Badue\",\"doi\":\"10.5220/0010559602900300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a path planner for unstructured urban environments (PPUE) for self-driving cars. PPUE receives initial and goal poses as input, as well as maps of the environment. It employs a hybrid A* algorithm with two heuristics for generating paths, which are smoothed using Conjugate Gradient optimization. Different from previous works, PPUE uses: (i) an obstacle distance grid-map, instead of an occupancy grid-map, for representing the environment; and (ii) an accurate but simple collision model of the car. We have examined PPUE’s performance experimentally in simulated and real world scenarios. Our results show that PPUE computes smooth and safe paths, which follow the kinematic constraints of the vehicle, fast enough for suitable real world operation. * Senior Member, IEEE\",\"PeriodicalId\":6436,\"journal\":{\"name\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"volume\":\"12 1\",\"pages\":\"290-300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010559602900300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010559602900300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种用于自动驾驶汽车的非结构化城市环境(PPUE)路径规划器。PPUE接收初始姿态和目标姿态作为输入,以及环境地图。该算法采用两种启发式混合a *算法生成路径,并采用共轭梯度优化对路径进行平滑。与以前的作品不同,PPUE使用:(i)障碍物距离网格图代替占用网格图来表示环境;(ii)精确而简单的汽车碰撞模型。我们已经在模拟和真实场景中对PPUE的性能进行了实验研究。我们的结果表明,PPUE计算光滑和安全的路径,遵循车辆的运动约束,足够快,适合现实世界的操作。* IEEE资深会员
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path Planning in Unstructured Urban Environments for Self-driving Cars
We present a path planner for unstructured urban environments (PPUE) for self-driving cars. PPUE receives initial and goal poses as input, as well as maps of the environment. It employs a hybrid A* algorithm with two heuristics for generating paths, which are smoothed using Conjugate Gradient optimization. Different from previous works, PPUE uses: (i) an obstacle distance grid-map, instead of an occupancy grid-map, for representing the environment; and (ii) an accurate but simple collision model of the car. We have examined PPUE’s performance experimentally in simulated and real world scenarios. Our results show that PPUE computes smooth and safe paths, which follow the kinematic constraints of the vehicle, fast enough for suitable real world operation. * Senior Member, IEEE
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信