内槽对风道热工性能的影响

G. I. Mahmood, Aasa Samson
{"title":"内槽对风道热工性能的影响","authors":"G. I. Mahmood, Aasa Samson","doi":"10.1115/FEDSM2018-83236","DOIUrl":null,"url":null,"abstract":"Internal fins, protrusions, and porous foams enhance the local convective heat transfer at the channel walls in the heat exchangers, electronic chips for cooling, and solar panels for cooling and heating by promoting the local turbulence in flow. However, the fluid pumping power in the channel suffers due to the blockage and high pressure drop caused by the fins, protrusions, and foams. The present article reports the experimental friction factors and Nusselt numbers in a rectangular channel with an array of internal grooves in one wall. The grooves provide the minimum flow blockage, but still promote the local turbulence to enhance the surface heat transfer. The cylindrical grooves are machined at 45° to the mean air-flow direction in one of the wide walls of the channel of aspect ratio of 40.6:1. The ratio of groove print-diameter to depth is 2.83:1. The objectives are to investigate the effects of groove pitch on the thermal performance in the channel as the flow Reynolds number (Re) varies between 600 and 15000. Two ratios of groove-pitch to print-diameter are employed — 3.2:1 and 4.5:1. The measurements include the distributions of the wall staticpressure and heat transfer coefficient along the channel wall having the grooves. The pressure distributions are obtained at the adiabatic condition. The heat transfer coefficients are obtained with the constant heat flux boundary condition from the grooved surface. The measurements are also obtained in the smooth channel when the grooved wall is replaced by a smooth wall for comparisons with the grooved channel. The results indicate the ratio of Darcy friction factor (f/fo) for the grooved channel (f) to that for the smooth channel (fo) increases with the Re by 27% and 41% at the maximum for the two grooves. The f/fo ratios are slightly higher for the grooves with the smaller pitch. The fully developed Nusselt number ratio (Nu/Nuo) for the grooved channel (Nu) to that for the smooth channel (Nuo) increases with the Re by 37% at the maximum for the two grooves. However, the thermal performance quantified by the ratio (Nu/Nuo)/(f/fo)1/3 is higher for the smaller pitch grooves for most of the Reynolds numbers > 2000. The results thus contribute to the design of heat exchangers and cooling channels for high thermal performance with the ratio (Nu/Nuo)/(f/fo)1/3 > 1.0 based on the smaller surface area, pumping power, and heat duty.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Internal Groove Influenced Thermohydraulic Performance on an Air-Channel\",\"authors\":\"G. I. Mahmood, Aasa Samson\",\"doi\":\"10.1115/FEDSM2018-83236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internal fins, protrusions, and porous foams enhance the local convective heat transfer at the channel walls in the heat exchangers, electronic chips for cooling, and solar panels for cooling and heating by promoting the local turbulence in flow. However, the fluid pumping power in the channel suffers due to the blockage and high pressure drop caused by the fins, protrusions, and foams. The present article reports the experimental friction factors and Nusselt numbers in a rectangular channel with an array of internal grooves in one wall. The grooves provide the minimum flow blockage, but still promote the local turbulence to enhance the surface heat transfer. The cylindrical grooves are machined at 45° to the mean air-flow direction in one of the wide walls of the channel of aspect ratio of 40.6:1. The ratio of groove print-diameter to depth is 2.83:1. The objectives are to investigate the effects of groove pitch on the thermal performance in the channel as the flow Reynolds number (Re) varies between 600 and 15000. Two ratios of groove-pitch to print-diameter are employed — 3.2:1 and 4.5:1. The measurements include the distributions of the wall staticpressure and heat transfer coefficient along the channel wall having the grooves. The pressure distributions are obtained at the adiabatic condition. The heat transfer coefficients are obtained with the constant heat flux boundary condition from the grooved surface. The measurements are also obtained in the smooth channel when the grooved wall is replaced by a smooth wall for comparisons with the grooved channel. The results indicate the ratio of Darcy friction factor (f/fo) for the grooved channel (f) to that for the smooth channel (fo) increases with the Re by 27% and 41% at the maximum for the two grooves. The f/fo ratios are slightly higher for the grooves with the smaller pitch. The fully developed Nusselt number ratio (Nu/Nuo) for the grooved channel (Nu) to that for the smooth channel (Nuo) increases with the Re by 37% at the maximum for the two grooves. However, the thermal performance quantified by the ratio (Nu/Nuo)/(f/fo)1/3 is higher for the smaller pitch grooves for most of the Reynolds numbers > 2000. The results thus contribute to the design of heat exchangers and cooling channels for high thermal performance with the ratio (Nu/Nuo)/(f/fo)1/3 > 1.0 based on the smaller surface area, pumping power, and heat duty.\",\"PeriodicalId\":23480,\"journal\":{\"name\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/FEDSM2018-83236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在换热器、散热用电子芯片和冷热用太阳能板中,内部翅片、突起和多孔泡沫通过促进流动中的局部湍流来增强通道壁上的局部对流换热。然而,由于翅片、突起和泡沫造成的堵塞和高压降,影响了通道内流体的泵送能力。本文报道了单壁内沟槽阵列矩形沟槽内摩擦因数和努塞尔数的实验结果。凹槽提供了最小的流动阻塞,但仍然促进了局部湍流,以增强表面传热。圆柱槽在长径比为40.6:1的通道宽壁上与平均气流方向成45°加工。凹槽印径与深度之比为2.83:1。目的是研究当流动雷诺数(Re)在600到15000之间变化时,槽距对通道内热性能的影响。采用两种凹槽间距与印刷直径的比例- 3.2:1和4.5:1。测量包括沿有凹槽的通道壁的壁面静压和传热系数的分布。得到了绝热条件下的压力分布。在恒热流密度边界条件下,从沟槽表面得到换热系数。当沟槽壁面被光滑壁面代替时,还可以在光滑通道中获得测量结果,以便与沟槽壁面进行比较。结果表明,沟槽通道(f)与光滑通道(fo)的达西摩擦因数之比(f/fo)随着Re的增大而增大27%,两种沟槽通道的最大达西摩擦因数增大41%。对于间距较小的凹槽,f/ o比率略高。沟槽沟槽(Nu)与光滑沟槽(Nuo)充分发育的努塞尔数比(Nu/Nuo)增加了37%,在两个沟槽中Re最大。然而,在雷诺数> 2000的情况下,以(Nu/Nuo)/(f/fo)1/3的比值量化的热性能在较小的节距沟槽中较高。基于较小的表面积、泵送功率和热负荷,设计出具有较高热工性能的(Nu/Nuo)/(f/fo)1/3 > 1.0的换热器和冷却通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internal Groove Influenced Thermohydraulic Performance on an Air-Channel
Internal fins, protrusions, and porous foams enhance the local convective heat transfer at the channel walls in the heat exchangers, electronic chips for cooling, and solar panels for cooling and heating by promoting the local turbulence in flow. However, the fluid pumping power in the channel suffers due to the blockage and high pressure drop caused by the fins, protrusions, and foams. The present article reports the experimental friction factors and Nusselt numbers in a rectangular channel with an array of internal grooves in one wall. The grooves provide the minimum flow blockage, but still promote the local turbulence to enhance the surface heat transfer. The cylindrical grooves are machined at 45° to the mean air-flow direction in one of the wide walls of the channel of aspect ratio of 40.6:1. The ratio of groove print-diameter to depth is 2.83:1. The objectives are to investigate the effects of groove pitch on the thermal performance in the channel as the flow Reynolds number (Re) varies between 600 and 15000. Two ratios of groove-pitch to print-diameter are employed — 3.2:1 and 4.5:1. The measurements include the distributions of the wall staticpressure and heat transfer coefficient along the channel wall having the grooves. The pressure distributions are obtained at the adiabatic condition. The heat transfer coefficients are obtained with the constant heat flux boundary condition from the grooved surface. The measurements are also obtained in the smooth channel when the grooved wall is replaced by a smooth wall for comparisons with the grooved channel. The results indicate the ratio of Darcy friction factor (f/fo) for the grooved channel (f) to that for the smooth channel (fo) increases with the Re by 27% and 41% at the maximum for the two grooves. The f/fo ratios are slightly higher for the grooves with the smaller pitch. The fully developed Nusselt number ratio (Nu/Nuo) for the grooved channel (Nu) to that for the smooth channel (Nuo) increases with the Re by 37% at the maximum for the two grooves. However, the thermal performance quantified by the ratio (Nu/Nuo)/(f/fo)1/3 is higher for the smaller pitch grooves for most of the Reynolds numbers > 2000. The results thus contribute to the design of heat exchangers and cooling channels for high thermal performance with the ratio (Nu/Nuo)/(f/fo)1/3 > 1.0 based on the smaller surface area, pumping power, and heat duty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信