{"title":"移动储层的卡诺效率","authors":"P. Landsberg, K. A. Johns","doi":"10.1088/0305-4470/5/10/007","DOIUrl":null,"url":null,"abstract":"The authors consider a standard Carnot cycle, except that the reservoirs (of proper temperatures TH and TC) are in uniform motion. Two efficiencies for such cycles exist in the literature. Each has the property that it can exceed the usual Carnot efficiency eta C=1-TC/TH for a class of inertial observers. It is shown that a reasonable definition of efficiency leads to the usual Carnot efficiency eta C for all inertial observers.","PeriodicalId":54612,"journal":{"name":"Physics-A Journal of General and Applied Physics","volume":"101 1","pages":"1433-1437"},"PeriodicalIF":0.0000,"publicationDate":"1972-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Carnot efficiencies for moving reservoirs\",\"authors\":\"P. Landsberg, K. A. Johns\",\"doi\":\"10.1088/0305-4470/5/10/007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors consider a standard Carnot cycle, except that the reservoirs (of proper temperatures TH and TC) are in uniform motion. Two efficiencies for such cycles exist in the literature. Each has the property that it can exceed the usual Carnot efficiency eta C=1-TC/TH for a class of inertial observers. It is shown that a reasonable definition of efficiency leads to the usual Carnot efficiency eta C for all inertial observers.\",\"PeriodicalId\":54612,\"journal\":{\"name\":\"Physics-A Journal of General and Applied Physics\",\"volume\":\"101 1\",\"pages\":\"1433-1437\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1972-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics-A Journal of General and Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0305-4470/5/10/007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics-A Journal of General and Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0305-4470/5/10/007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The authors consider a standard Carnot cycle, except that the reservoirs (of proper temperatures TH and TC) are in uniform motion. Two efficiencies for such cycles exist in the literature. Each has the property that it can exceed the usual Carnot efficiency eta C=1-TC/TH for a class of inertial observers. It is shown that a reasonable definition of efficiency leads to the usual Carnot efficiency eta C for all inertial observers.