{"title":"在辐射驱动的风中激波产生的x射线发射:天蝎座Tau的一个模型","authors":"J. Macfarlane, J. Cassinelli","doi":"10.1086/168197","DOIUrl":null,"url":null,"abstract":"A one-dimensional radiation-hydrodynamics code is used to numerically investigate the structure and evolution of shocks in the winds of hot stars. Results are presented for the specific case of Tau Sco, a well-studied main-sequence B star for which there are X-ray data from the Einstien satellite's Solid State Spectrometer. A phenomenological radiative acceleration term and a mass-loss rate consistent with UV observations, are used to determine the time dependence of the temperatures within and X-ray emission from an isolated shock region. The driving acceleration leads to the formation of a two-component shock zone with 'forward' and 'reverse' shocks, each with their own characteristic temperature. A denser cold region forms between the two shocks, which could potentially account for the presence of narrow absorption features that are observed in the UV P Cygni profiles of many hot stars. The X-ray emission spectra from the shocks in the calculations are in good general agreement with two-temperature model fits to Einstein X-ray observations.","PeriodicalId":9423,"journal":{"name":"Bulletin of the American Astronomical Society","volume":"20 1","pages":"1014"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Shock-Generated X-ray Emission in Radiatively-Driven Winds: A Model for Tau Scorpii\",\"authors\":\"J. Macfarlane, J. Cassinelli\",\"doi\":\"10.1086/168197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A one-dimensional radiation-hydrodynamics code is used to numerically investigate the structure and evolution of shocks in the winds of hot stars. Results are presented for the specific case of Tau Sco, a well-studied main-sequence B star for which there are X-ray data from the Einstien satellite's Solid State Spectrometer. A phenomenological radiative acceleration term and a mass-loss rate consistent with UV observations, are used to determine the time dependence of the temperatures within and X-ray emission from an isolated shock region. The driving acceleration leads to the formation of a two-component shock zone with 'forward' and 'reverse' shocks, each with their own characteristic temperature. A denser cold region forms between the two shocks, which could potentially account for the presence of narrow absorption features that are observed in the UV P Cygni profiles of many hot stars. The X-ray emission spectra from the shocks in the calculations are in good general agreement with two-temperature model fits to Einstein X-ray observations.\",\"PeriodicalId\":9423,\"journal\":{\"name\":\"Bulletin of the American Astronomical Society\",\"volume\":\"20 1\",\"pages\":\"1014\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Astronomical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1086/168197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Astronomical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1086/168197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shock-Generated X-ray Emission in Radiatively-Driven Winds: A Model for Tau Scorpii
A one-dimensional radiation-hydrodynamics code is used to numerically investigate the structure and evolution of shocks in the winds of hot stars. Results are presented for the specific case of Tau Sco, a well-studied main-sequence B star for which there are X-ray data from the Einstien satellite's Solid State Spectrometer. A phenomenological radiative acceleration term and a mass-loss rate consistent with UV observations, are used to determine the time dependence of the temperatures within and X-ray emission from an isolated shock region. The driving acceleration leads to the formation of a two-component shock zone with 'forward' and 'reverse' shocks, each with their own characteristic temperature. A denser cold region forms between the two shocks, which could potentially account for the presence of narrow absorption features that are observed in the UV P Cygni profiles of many hot stars. The X-ray emission spectra from the shocks in the calculations are in good general agreement with two-temperature model fits to Einstein X-ray observations.