两个不同环上的广义模的范畴

Tariq Z.Al-Killabi, Hassan J. Al-Hwaeer, Ali A.Al-Butahi
{"title":"两个不同环上的广义模的范畴","authors":"Tariq Z.Al-Killabi, Hassan J. Al-Hwaeer, Ali A.Al-Butahi","doi":"10.22401/anjs.26.1.06","DOIUrl":null,"url":null,"abstract":"In this paper,a method of enriched category theory to form a closed symmetricmonoidal structure on the category of generalized modules CR= (modR,Ab) have been implemented. Further, a new kind of generalized module category defined on two commutativerings R and S, denoted by CRS = (modR,modS) is constructed.Finally, the authors studied a localization on this type of categories, both of them are Grothendieck","PeriodicalId":7494,"journal":{"name":"Al-Nahrain Journal of Science","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Category of Generalized Modules Over Two Different Rings\",\"authors\":\"Tariq Z.Al-Killabi, Hassan J. Al-Hwaeer, Ali A.Al-Butahi\",\"doi\":\"10.22401/anjs.26.1.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper,a method of enriched category theory to form a closed symmetricmonoidal structure on the category of generalized modules CR= (modR,Ab) have been implemented. Further, a new kind of generalized module category defined on two commutativerings R and S, denoted by CRS = (modR,modS) is constructed.Finally, the authors studied a localization on this type of categories, both of them are Grothendieck\",\"PeriodicalId\":7494,\"journal\":{\"name\":\"Al-Nahrain Journal of Science\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Nahrain Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22401/anjs.26.1.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Nahrain Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22401/anjs.26.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了在广义模CR= (modR,Ab)的范畴上形成一个封闭对称半单面结构的富范畴论方法。进一步,构造了定义在两个可交换点R和S上的一类新的广义模范畴,表示为CRS = (modR,modS)。最后,作者研究了这类范畴的一个定位,这两个范畴都是格罗滕迪克范畴
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Category of Generalized Modules Over Two Different Rings
In this paper,a method of enriched category theory to form a closed symmetricmonoidal structure on the category of generalized modules CR= (modR,Ab) have been implemented. Further, a new kind of generalized module category defined on two commutativerings R and S, denoted by CRS = (modR,modS) is constructed.Finally, the authors studied a localization on this type of categories, both of them are Grothendieck
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信