ag - resunet++:一种改进的基于编码器-解码器的结肠镜图像息肉分割方法

Nguyen Ba Hung, Thanh Duc Nguyen, Thai Van Chien, D. V. Sang
{"title":"ag - resunet++:一种改进的基于编码器-解码器的结肠镜图像息肉分割方法","authors":"Nguyen Ba Hung, Thanh Duc Nguyen, Thai Van Chien, D. V. Sang","doi":"10.1109/RIVF51545.2021.9642070","DOIUrl":null,"url":null,"abstract":"Colorectal cancer is one of the most prevalent causes of cancer-related death. Early polyp segmentation in colonoscopy is helpful in diagnosing and preventing colorectal cancer. However, this task a challenging due to variations in the appearance of polyps. This paper proposes a new encoder-decoder-based method called AG-ResUNet++ that leverages attention gate mechanism and residual connections to enhance the performance of the existing UNet++ model in the polyp segmentation task. Our method considerably outperforms other state-of-the-art methods on the popular polyp segmentation datasets, including KvasirSEG and CVC-612.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"14 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AG-ResUNet++: An Improved Encoder-Decoder Based Method for Polyp Segmentation in Colonoscopy Images\",\"authors\":\"Nguyen Ba Hung, Thanh Duc Nguyen, Thai Van Chien, D. V. Sang\",\"doi\":\"10.1109/RIVF51545.2021.9642070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colorectal cancer is one of the most prevalent causes of cancer-related death. Early polyp segmentation in colonoscopy is helpful in diagnosing and preventing colorectal cancer. However, this task a challenging due to variations in the appearance of polyps. This paper proposes a new encoder-decoder-based method called AG-ResUNet++ that leverages attention gate mechanism and residual connections to enhance the performance of the existing UNet++ model in the polyp segmentation task. Our method considerably outperforms other state-of-the-art methods on the popular polyp segmentation datasets, including KvasirSEG and CVC-612.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"14 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

结直肠癌是癌症相关死亡的最普遍原因之一。结肠镜下早期息肉分割有助于结直肠癌的诊断和预防。然而,由于息肉外观的变化,这项任务具有挑战性。本文提出了一种新的基于编码器-解码器的方法ag - reun++,该方法利用注意门机制和剩余连接来提高现有un++模型在息肉分割任务中的性能。我们的方法在流行的息肉分割数据集上显著优于其他最先进的方法,包括KvasirSEG和CVC-612。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AG-ResUNet++: An Improved Encoder-Decoder Based Method for Polyp Segmentation in Colonoscopy Images
Colorectal cancer is one of the most prevalent causes of cancer-related death. Early polyp segmentation in colonoscopy is helpful in diagnosing and preventing colorectal cancer. However, this task a challenging due to variations in the appearance of polyps. This paper proposes a new encoder-decoder-based method called AG-ResUNet++ that leverages attention gate mechanism and residual connections to enhance the performance of the existing UNet++ model in the polyp segmentation task. Our method considerably outperforms other state-of-the-art methods on the popular polyp segmentation datasets, including KvasirSEG and CVC-612.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信