稀疏框架模型的生成层次学习

Jianwen Xie, Yifei Xu, Erik Nijkamp, Y. Wu, Song-Chun Zhu
{"title":"稀疏框架模型的生成层次学习","authors":"Jianwen Xie, Yifei Xu, Erik Nijkamp, Y. Wu, Song-Chun Zhu","doi":"10.1109/CVPR.2017.209","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for generative learning of hierarchical random field models. The resulting model, which we call the hierarchical sparse FRAME (Filters, Random field, And Maximum Entropy) model, is a generalization of the original sparse FRAME model by decomposing it into multiple parts that are allowed to shift their locations, scales and rotations, so that the resulting model becomes a hierarchical deformable template. The model can be trained by an EM-type algorithm that alternates the following two steps: (1) Inference: Given the current model, we match it to each training image by inferring the unknown locations, scales, and rotations of the object and its parts by recursive sum-max maps, and (2) Re-learning: Given the inferred geometric configurations of the objects and their parts, we re-learn the model parameters by maximum likelihood estimation via stochastic gradient algorithm. Experiments show that the proposed method is capable of learning meaningful and interpretable templates that can be used for object detection, classification and clustering.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"18 1","pages":"1933-1941"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generative Hierarchical Learning of Sparse FRAME Models\",\"authors\":\"Jianwen Xie, Yifei Xu, Erik Nijkamp, Y. Wu, Song-Chun Zhu\",\"doi\":\"10.1109/CVPR.2017.209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for generative learning of hierarchical random field models. The resulting model, which we call the hierarchical sparse FRAME (Filters, Random field, And Maximum Entropy) model, is a generalization of the original sparse FRAME model by decomposing it into multiple parts that are allowed to shift their locations, scales and rotations, so that the resulting model becomes a hierarchical deformable template. The model can be trained by an EM-type algorithm that alternates the following two steps: (1) Inference: Given the current model, we match it to each training image by inferring the unknown locations, scales, and rotations of the object and its parts by recursive sum-max maps, and (2) Re-learning: Given the inferred geometric configurations of the objects and their parts, we re-learn the model parameters by maximum likelihood estimation via stochastic gradient algorithm. Experiments show that the proposed method is capable of learning meaningful and interpretable templates that can be used for object detection, classification and clustering.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"18 1\",\"pages\":\"1933-1941\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种分层随机场模型的生成学习方法。我们将得到的模型称为分层稀疏FRAME (Filters, Random field, And Maximum Entropy)模型,它是对原始稀疏FRAME模型的推广,将其分解为多个部分,这些部分可以移动它们的位置、比例和旋转,从而使得到的模型成为一个分层可变形的模板。该模型可以通过em类型的算法进行训练,该算法交替进行以下两个步骤:(1)推断:给定当前模型,我们通过递归和最大映射推断物体及其部分的未知位置、尺度和旋转,将其与每个训练图像进行匹配;(2)重新学习:给定推断的物体及其部分的几何构型,我们通过随机梯度算法通过最大似然估计重新学习模型参数。实验表明,该方法能够学习有意义且可解释的模板,用于目标检测、分类和聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Hierarchical Learning of Sparse FRAME Models
This paper proposes a method for generative learning of hierarchical random field models. The resulting model, which we call the hierarchical sparse FRAME (Filters, Random field, And Maximum Entropy) model, is a generalization of the original sparse FRAME model by decomposing it into multiple parts that are allowed to shift their locations, scales and rotations, so that the resulting model becomes a hierarchical deformable template. The model can be trained by an EM-type algorithm that alternates the following two steps: (1) Inference: Given the current model, we match it to each training image by inferring the unknown locations, scales, and rotations of the object and its parts by recursive sum-max maps, and (2) Re-learning: Given the inferred geometric configurations of the objects and their parts, we re-learn the model parameters by maximum likelihood estimation via stochastic gradient algorithm. Experiments show that the proposed method is capable of learning meaningful and interpretable templates that can be used for object detection, classification and clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信