M. A. Ollis, A. Pasotti, M. Pellegrini, John R. Schmitt
{"title":"可增长的实现:对Buratti-Horak-Rosa猜想的一种强有力的方法","authors":"M. A. Ollis, A. Pasotti, M. Pellegrini, John R. Schmitt","doi":"10.26493/1855-3974.2659.be1","DOIUrl":null,"url":null,"abstract":"Label the vertices of the complete graph Kv with the integers {0, 1, . . . , v − 1} and define the length of the edge between x and y to be min(|x−y|, v−|x−y|). Let L be a multiset of size v − 1 with underlying set contained in {1, . . . , bv/2c}. The Buratti-Horak-Rosa Conjecture is that there is a Hamiltonian path in Kv whose edge lengths are exactly L if and only if for any divisor d of v the number of multiples of d appearing in L is at most v − d. We introduce “growable realizations,” which enable us to prove many new instances of the conjecture and to reprove known results in a simpler way. As examples of the new method, we give a complete solution when the underlying set is contained in {1, 4, 5} or in {1, 2, 3, 4} and a partial result when the underlying set has the form {1, x, 2x}. We believe that for any set U of positive integers there is a finite set of growable realizations that implies the truth of the Buratti-Horak-Rosa Conjecture for all but finitely many multisets with underlying set U . MSC: 05C38, 05C78.","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"41 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Growable realizations: a powerful approach to the Buratti-Horak-Rosa Conjecture\",\"authors\":\"M. A. Ollis, A. Pasotti, M. Pellegrini, John R. Schmitt\",\"doi\":\"10.26493/1855-3974.2659.be1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Label the vertices of the complete graph Kv with the integers {0, 1, . . . , v − 1} and define the length of the edge between x and y to be min(|x−y|, v−|x−y|). Let L be a multiset of size v − 1 with underlying set contained in {1, . . . , bv/2c}. The Buratti-Horak-Rosa Conjecture is that there is a Hamiltonian path in Kv whose edge lengths are exactly L if and only if for any divisor d of v the number of multiples of d appearing in L is at most v − d. We introduce “growable realizations,” which enable us to prove many new instances of the conjecture and to reprove known results in a simpler way. As examples of the new method, we give a complete solution when the underlying set is contained in {1, 4, 5} or in {1, 2, 3, 4} and a partial result when the underlying set has the form {1, x, 2x}. We believe that for any set U of positive integers there is a finite set of growable realizations that implies the truth of the Buratti-Horak-Rosa Conjecture for all but finitely many multisets with underlying set U . MSC: 05C38, 05C78.\",\"PeriodicalId\":8402,\"journal\":{\"name\":\"Ars Math. Contemp.\",\"volume\":\"41 1\",\"pages\":\"4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Math. Contemp.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2659.be1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2659.be1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Growable realizations: a powerful approach to the Buratti-Horak-Rosa Conjecture
Label the vertices of the complete graph Kv with the integers {0, 1, . . . , v − 1} and define the length of the edge between x and y to be min(|x−y|, v−|x−y|). Let L be a multiset of size v − 1 with underlying set contained in {1, . . . , bv/2c}. The Buratti-Horak-Rosa Conjecture is that there is a Hamiltonian path in Kv whose edge lengths are exactly L if and only if for any divisor d of v the number of multiples of d appearing in L is at most v − d. We introduce “growable realizations,” which enable us to prove many new instances of the conjecture and to reprove known results in a simpler way. As examples of the new method, we give a complete solution when the underlying set is contained in {1, 4, 5} or in {1, 2, 3, 4} and a partial result when the underlying set has the form {1, x, 2x}. We believe that for any set U of positive integers there is a finite set of growable realizations that implies the truth of the Buratti-Horak-Rosa Conjecture for all but finitely many multisets with underlying set U . MSC: 05C38, 05C78.