B. Chen, B. Gao, S. W. Sheng, L.F. Liu, X.Y. Liu, Y.S. Chen, Y. Wang, J. Kang, B. Yu
{"title":"面向操作的RRAM关键性能提升方案","authors":"B. Chen, B. Gao, S. W. Sheng, L.F. Liu, X.Y. Liu, Y.S. Chen, Y. Wang, J. Kang, B. Yu","doi":"10.1109/SNW.2010.5562578","DOIUrl":null,"url":null,"abstract":"Based on the new finding on switching behavior, for the first time a new memory operation principle is proposed to control the switching and to achieve improved performance of oxide-based RRAM including device-to-device and cycle-to-cycle uniformity, RESET current, and window of RHRS/RLRS ratio. Furthermore, a numerical simulation method is developed to evaluate the validity of the new operation principle in scaled RRAM devices.","PeriodicalId":6433,"journal":{"name":"2010 Silicon Nanoelectronics Workshop","volume":"1 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operation-oriented solution to boost key performance of RRAM\",\"authors\":\"B. Chen, B. Gao, S. W. Sheng, L.F. Liu, X.Y. Liu, Y.S. Chen, Y. Wang, J. Kang, B. Yu\",\"doi\":\"10.1109/SNW.2010.5562578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the new finding on switching behavior, for the first time a new memory operation principle is proposed to control the switching and to achieve improved performance of oxide-based RRAM including device-to-device and cycle-to-cycle uniformity, RESET current, and window of RHRS/RLRS ratio. Furthermore, a numerical simulation method is developed to evaluate the validity of the new operation principle in scaled RRAM devices.\",\"PeriodicalId\":6433,\"journal\":{\"name\":\"2010 Silicon Nanoelectronics Workshop\",\"volume\":\"1 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Silicon Nanoelectronics Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNW.2010.5562578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Silicon Nanoelectronics Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2010.5562578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operation-oriented solution to boost key performance of RRAM
Based on the new finding on switching behavior, for the first time a new memory operation principle is proposed to control the switching and to achieve improved performance of oxide-based RRAM including device-to-device and cycle-to-cycle uniformity, RESET current, and window of RHRS/RLRS ratio. Furthermore, a numerical simulation method is developed to evaluate the validity of the new operation principle in scaled RRAM devices.