{"title":"掺银BaTiO3导电粉体的制备与表征","authors":"S. Hao, D. Fu, Jialong Li, Wen Wang, B. Shen","doi":"10.1155/2011/837091","DOIUrl":null,"url":null,"abstract":"BaTiO3 powders doped with Ag at different Ag/Ba molar ratios were prepared by sol-gel method. The resistivity reached the lowest point of 5.644 Ω·m when Ag concentration was 0.10 at% and the powders were calcined for two times at 800°C and 500°C. XRD and FTIR investigations showed that no new substance was formed after the doping and calcining process, but the particle size and the strength of Ti-O bond in modified BaTiO3 crystal cell all changed. The conductivity of Ag-doped BaTiO3 powders with different Ag concentrations and through different preparing methods was discussed by using defect theory.","PeriodicalId":14074,"journal":{"name":"International Journal of Inorganic Chemistry","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Preparation and Characterization of Ag-Doped BaTiO3 Conductive Powders\",\"authors\":\"S. Hao, D. Fu, Jialong Li, Wen Wang, B. Shen\",\"doi\":\"10.1155/2011/837091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BaTiO3 powders doped with Ag at different Ag/Ba molar ratios were prepared by sol-gel method. The resistivity reached the lowest point of 5.644 Ω·m when Ag concentration was 0.10 at% and the powders were calcined for two times at 800°C and 500°C. XRD and FTIR investigations showed that no new substance was formed after the doping and calcining process, but the particle size and the strength of Ti-O bond in modified BaTiO3 crystal cell all changed. The conductivity of Ag-doped BaTiO3 powders with different Ag concentrations and through different preparing methods was discussed by using defect theory.\",\"PeriodicalId\":14074,\"journal\":{\"name\":\"International Journal of Inorganic Chemistry\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/837091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Inorganic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/837091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation and Characterization of Ag-Doped BaTiO3 Conductive Powders
BaTiO3 powders doped with Ag at different Ag/Ba molar ratios were prepared by sol-gel method. The resistivity reached the lowest point of 5.644 Ω·m when Ag concentration was 0.10 at% and the powders were calcined for two times at 800°C and 500°C. XRD and FTIR investigations showed that no new substance was formed after the doping and calcining process, but the particle size and the strength of Ti-O bond in modified BaTiO3 crystal cell all changed. The conductivity of Ag-doped BaTiO3 powders with different Ag concentrations and through different preparing methods was discussed by using defect theory.