共代数形式曲线谱与谱喷空间

IF 2 1区 数学
E. Peterson
{"title":"共代数形式曲线谱与谱喷空间","authors":"E. Peterson","doi":"10.2140/gt.2020.24.1","DOIUrl":null,"url":null,"abstract":"We import into homotopy theory the algebro-geometric construction of the cotangent space of a geometric point on a scheme. Specializing to the category of spectra local to a Morava $K$-theory of height $d$, we show that this can be used to produce a choice-free model of the determinantal sphere as well as an efficient Picard-graded cellular decomposition of $K(\\mathbb Z_p, d+1)$. Coupling these ideas to work of Westerland, we give a \"Snaith's theorem\" for the Iwasawa extension of the $K(d)$-local sphere.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2019-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Coalgebraic formal curve spectra and spectral jet spaces\",\"authors\":\"E. Peterson\",\"doi\":\"10.2140/gt.2020.24.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We import into homotopy theory the algebro-geometric construction of the cotangent space of a geometric point on a scheme. Specializing to the category of spectra local to a Morava $K$-theory of height $d$, we show that this can be used to produce a choice-free model of the determinantal sphere as well as an efficient Picard-graded cellular decomposition of $K(\\\\mathbb Z_p, d+1)$. Coupling these ideas to work of Westerland, we give a \\\"Snaith's theorem\\\" for the Iwasawa extension of the $K(d)$-local sphere.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2020.24.1\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2020.24.1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

将方案上一个几何点的余切空间的代数-几何构造引入同伦理论。专门研究高度为d的Morava $K$-理论的局部光谱范畴,我们证明了这可以用来产生确定性球体的无选择模型以及K(\mathbb Z_p, d+1)$的有效皮卡德分级元胞分解。将这些思想与Westerland的工作结合起来,我们给出了$K(d)$局部球的Iwasawa扩展的“Snaith定理”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coalgebraic formal curve spectra and spectral jet spaces
We import into homotopy theory the algebro-geometric construction of the cotangent space of a geometric point on a scheme. Specializing to the category of spectra local to a Morava $K$-theory of height $d$, we show that this can be used to produce a choice-free model of the determinantal sphere as well as an efficient Picard-graded cellular decomposition of $K(\mathbb Z_p, d+1)$. Coupling these ideas to work of Westerland, we give a "Snaith's theorem" for the Iwasawa extension of the $K(d)$-local sphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信