射影模的推广

Q3 Mathematics
Fitriani -, I. E. Wijayanti, Ahmad Faisol
{"title":"射影模的推广","authors":"Fitriani -, I. E. Wijayanti, Ahmad Faisol","doi":"10.5539/jmr.v15n1p24","DOIUrl":null,"url":null,"abstract":"Let $V$ be a submodule of a direct sum of some elements in $\\mathcal{U}$, and $X$ be a submodule of a direct sum of some elements in $\\mathcal{N}$, where $\\mathcal{U}$ and $\\mathcal{N}$ are families of $R$-modules. A $\\mathcal{U}$-free module is a generalization of a free module. According to the definition of $\\mathcal{U}$-free module, we define three kinds of projective$_{\\mathcal{U}}$ in this research, i.e., projective$_{\\underline{\\mathcal{U}}}$, projective$_{\\mathcal{U}}$ module, and strictly projective$_{\\mathcal{U}}$ module. The notion of strictly projective$_{\\mathcal{U}}$ is a generalization of the projective module. In this research, we discuss the relationship between projective modules and the three types of modules. Furthermore, we show that the properties of $\\mathcal{U}$ impact the properties of the projective$_{\\mathcal{U}}$ module so that we can determine some properties of the projective$_{\\mathcal{U}}$ module based on the properties of the family of $\\mathcal{U}$ of $R$-modules.","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalization of Projective Module\",\"authors\":\"Fitriani -, I. E. Wijayanti, Ahmad Faisol\",\"doi\":\"10.5539/jmr.v15n1p24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $V$ be a submodule of a direct sum of some elements in $\\\\mathcal{U}$, and $X$ be a submodule of a direct sum of some elements in $\\\\mathcal{N}$, where $\\\\mathcal{U}$ and $\\\\mathcal{N}$ are families of $R$-modules. A $\\\\mathcal{U}$-free module is a generalization of a free module. According to the definition of $\\\\mathcal{U}$-free module, we define three kinds of projective$_{\\\\mathcal{U}}$ in this research, i.e., projective$_{\\\\underline{\\\\mathcal{U}}}$, projective$_{\\\\mathcal{U}}$ module, and strictly projective$_{\\\\mathcal{U}}$ module. The notion of strictly projective$_{\\\\mathcal{U}}$ is a generalization of the projective module. In this research, we discuss the relationship between projective modules and the three types of modules. Furthermore, we show that the properties of $\\\\mathcal{U}$ impact the properties of the projective$_{\\\\mathcal{U}}$ module so that we can determine some properties of the projective$_{\\\\mathcal{U}}$ module based on the properties of the family of $\\\\mathcal{U}$ of $R$-modules.\",\"PeriodicalId\":38619,\"journal\":{\"name\":\"International Journal of Mathematics in Operational Research\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics in Operational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/jmr.v15n1p24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n1p24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设$V$是$\mathcal{U}$中某些元素的直和的子模块,$X$是$\mathcal{N}$中某些元素的直和的子模块,其中$\mathcal{U}$和$\mathcal{N}$是$R$-模块的族。$\mathcal{U}$ free模块是自由模块的泛化。根据$\mathcal{U}$ free模块的定义,本文定义了三种投影$_{\mathcal{U}}$,即投影$_{\mathcal{U}}$、投影$_{\mathcal{U}}$模块和严格投影$_{\mathcal{U}}$模块。严格射影$_{\mathcal{U}}$的概念是对射影模的推广。在本研究中,我们讨论了投影模与三种模之间的关系。更进一步,我们证明了$\mathcal{U}$的性质对$_{\mathcal{U}}$模的性质的影响,从而我们可以根据$R$-模的$\mathcal{U}$族的性质来确定$_{\mathcal{U}}$模的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generalization of Projective Module
Let $V$ be a submodule of a direct sum of some elements in $\mathcal{U}$, and $X$ be a submodule of a direct sum of some elements in $\mathcal{N}$, where $\mathcal{U}$ and $\mathcal{N}$ are families of $R$-modules. A $\mathcal{U}$-free module is a generalization of a free module. According to the definition of $\mathcal{U}$-free module, we define three kinds of projective$_{\mathcal{U}}$ in this research, i.e., projective$_{\underline{\mathcal{U}}}$, projective$_{\mathcal{U}}$ module, and strictly projective$_{\mathcal{U}}$ module. The notion of strictly projective$_{\mathcal{U}}$ is a generalization of the projective module. In this research, we discuss the relationship between projective modules and the three types of modules. Furthermore, we show that the properties of $\mathcal{U}$ impact the properties of the projective$_{\mathcal{U}}$ module so that we can determine some properties of the projective$_{\mathcal{U}}$ module based on the properties of the family of $\mathcal{U}$ of $R$-modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mathematics in Operational Research
International Journal of Mathematics in Operational Research Decision Sciences-Decision Sciences (all)
CiteScore
2.10
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信