{"title":"利用任意算子均值及其对偶的新广义不等式","authors":"Leila Nasiri, M. Bakherad","doi":"10.52846/ami.v48i1.1179","DOIUrl":null,"url":null,"abstract":"In this article, we present some operator inequalities via arbitrary operator means and unital positive linear maps. For instance, we show that if $A,B \\in {\\mathbb B}({\\mathscr H}) $ are two positive invertible operators such that $ 0 < m \\leq A,B \\leq M $ and $\\sigma$ is an arbitrary operator mean, then \\begin{align*} \\Phi^{p}(A\\sigma B) \\leq K^{p}(h) \\Phi^{p}(B\\sigma^{\\perp} A), \\end{align*} where $\\sigma^{\\perp}$ is dual $\\sigma$, $p\\geq0$ and $K(h)=\\frac{(M+m)^{2}}{4 Mm}$ is the classical Kantorovich constant. We also generalize the above inequality for two arbitrary means $\\sigma_{1},\\sigma_{2}$ which lie between $\\sigma$ and $\\sigma^{\\perp}$.","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"19 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New generalized inequalities using arbitrary operator means and their duals\",\"authors\":\"Leila Nasiri, M. Bakherad\",\"doi\":\"10.52846/ami.v48i1.1179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present some operator inequalities via arbitrary operator means and unital positive linear maps. For instance, we show that if $A,B \\\\in {\\\\mathbb B}({\\\\mathscr H}) $ are two positive invertible operators such that $ 0 < m \\\\leq A,B \\\\leq M $ and $\\\\sigma$ is an arbitrary operator mean, then \\\\begin{align*} \\\\Phi^{p}(A\\\\sigma B) \\\\leq K^{p}(h) \\\\Phi^{p}(B\\\\sigma^{\\\\perp} A), \\\\end{align*} where $\\\\sigma^{\\\\perp}$ is dual $\\\\sigma$, $p\\\\geq0$ and $K(h)=\\\\frac{(M+m)^{2}}{4 Mm}$ is the classical Kantorovich constant. We also generalize the above inequality for two arbitrary means $\\\\sigma_{1},\\\\sigma_{2}$ which lie between $\\\\sigma$ and $\\\\sigma^{\\\\perp}$.\",\"PeriodicalId\":43654,\"journal\":{\"name\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52846/ami.v48i1.1179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v48i1.1179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文给出了任意算子均值和一元正线性映射的算子不等式。例如,如果$A,B \in {\mathbb B}({\mathscr H}) $是两个正可逆算子,使得$ 0 < m \leq A,B \leq M $和$\sigma$是任意算子均值,则\begin{align*} \Phi^{p}(A\sigma B) \leq K^{p}(h) \Phi^{p}(B\sigma^{\perp} A), \end{align*}其中$\sigma^{\perp}$是对偶的$\sigma$, $p\geq0$和$K(h)=\frac{(M+m)^{2}}{4 Mm}$是经典的Kantorovich常数。我们还将上述不等式推广到$\sigma$和$\sigma^{\perp}$之间的两个任意均值$\sigma_{1},\sigma_{2}$。
New generalized inequalities using arbitrary operator means and their duals
In this article, we present some operator inequalities via arbitrary operator means and unital positive linear maps. For instance, we show that if $A,B \in {\mathbb B}({\mathscr H}) $ are two positive invertible operators such that $ 0 < m \leq A,B \leq M $ and $\sigma$ is an arbitrary operator mean, then \begin{align*} \Phi^{p}(A\sigma B) \leq K^{p}(h) \Phi^{p}(B\sigma^{\perp} A), \end{align*} where $\sigma^{\perp}$ is dual $\sigma$, $p\geq0$ and $K(h)=\frac{(M+m)^{2}}{4 Mm}$ is the classical Kantorovich constant. We also generalize the above inequality for two arbitrary means $\sigma_{1},\sigma_{2}$ which lie between $\sigma$ and $\sigma^{\perp}$.