从回归函数到非参数设置下的扩散漂移估计

F. Comte
{"title":"从回归函数到非参数设置下的扩散漂移估计","authors":"F. Comte","doi":"10.1051/proc/202068002","DOIUrl":null,"url":null,"abstract":"We consider a diffusion model dXt = b(Xt)dt + σ(Xt)dWt,X0 = η, under conditions ensuring existence, stationarity and geometrical β-mixing of the process solution. We assume that we observe a sample (XkΔ)0≤k≤n+1. Our aim is to study nonparametric estimators of the drift function b(.), under general conditions. We propose projection estimators based on a least-squares type contrast and, in order to generalize existing results, we want to consider possibly non compactly supported projection bases and possibly non bounded volatility. To that aim, we relate the model with a simpler regression model, then to a more elaborate heteroscedastic model, plus some residual terms. This allows to see the role of heteroscedasticity first and the role of dependency between the variables and to present different probabilistic tools used to face each part of the problem. For each step, we try to see the “price” of each assumption. This is the developed version of the talk given in August 2018 in Dijon, Journées MAS.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From regression function to diffusion drift estimation in nonparametric setting\",\"authors\":\"F. Comte\",\"doi\":\"10.1051/proc/202068002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a diffusion model dXt = b(Xt)dt + σ(Xt)dWt,X0 = η, under conditions ensuring existence, stationarity and geometrical β-mixing of the process solution. We assume that we observe a sample (XkΔ)0≤k≤n+1. Our aim is to study nonparametric estimators of the drift function b(.), under general conditions. We propose projection estimators based on a least-squares type contrast and, in order to generalize existing results, we want to consider possibly non compactly supported projection bases and possibly non bounded volatility. To that aim, we relate the model with a simpler regression model, then to a more elaborate heteroscedastic model, plus some residual terms. This allows to see the role of heteroscedasticity first and the role of dependency between the variables and to present different probabilistic tools used to face each part of the problem. For each step, we try to see the “price” of each assumption. This is the developed version of the talk given in August 2018 in Dijon, Journées MAS.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/proc/202068002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202068002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在保证过程溶液存在性、平稳性和几何β-混合的条件下,考虑一个扩散模型dXt = b(Xt)dt + σ(Xt)dWt,X0 = η。我们假设我们观察到一个样本(XkΔ)0≤k≤n+1。我们的目的是研究一般条件下漂移函数b(.)的非参数估计量。我们提出了基于最小二乘类型对比的投影估计,为了推广现有的结果,我们想考虑可能的非紧支持投影基和可能的无界波动。为此,我们将模型与一个更简单的回归模型联系起来,然后与一个更复杂的异方差模型以及一些残差项联系起来。这允许我们首先看到异方差的作用和变量之间的依赖性的作用,并提出用于面对问题的每个部分的不同概率工具。对于每一步,我们试图看到每个假设的“代价”。这是2018年8月在第戎的演讲的改进版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From regression function to diffusion drift estimation in nonparametric setting
We consider a diffusion model dXt = b(Xt)dt + σ(Xt)dWt,X0 = η, under conditions ensuring existence, stationarity and geometrical β-mixing of the process solution. We assume that we observe a sample (XkΔ)0≤k≤n+1. Our aim is to study nonparametric estimators of the drift function b(.), under general conditions. We propose projection estimators based on a least-squares type contrast and, in order to generalize existing results, we want to consider possibly non compactly supported projection bases and possibly non bounded volatility. To that aim, we relate the model with a simpler regression model, then to a more elaborate heteroscedastic model, plus some residual terms. This allows to see the role of heteroscedasticity first and the role of dependency between the variables and to present different probabilistic tools used to face each part of the problem. For each step, we try to see the “price” of each assumption. This is the developed version of the talk given in August 2018 in Dijon, Journées MAS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信