确定在尾态存在时吸收体光致发光的最大开路电压

John K. Katahara, H. Hillhouse
{"title":"确定在尾态存在时吸收体光致发光的最大开路电压","authors":"John K. Katahara, H. Hillhouse","doi":"10.1109/PVSC.2014.6925052","DOIUrl":null,"url":null,"abstract":"We develop a general model for sub-bandgap absorption that includes the Urbach, Franz-Keldysh, and Thomas-Fermi models as limiting forms. Combination of this absorption scheme with a generalized Kirchhoff law for spontaneous emission of photons yields a model of photoluminescence (PL) with broad applicability to many semiconductors. This model allows for full-spectrum fitting of absolute intensity PL data and outputs: (1) the functional form of sub-bandgap absorption, (2) the energy broadening term (3) the direct bandgap, (4) the local temperature, and (5) the quasi-Fermi Level Splitting (QFLS). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se)2 and Cu2ZnSn(S,Se)4 to reveal the nature of their tail states. The extracted QFLS is shown to accurately predict the open-circuit voltage of devices fabricated from the materials.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"5 1","pages":"0866-0868"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the maximum open circuit voltage from absorber photoluminescence in the presence of tail states\",\"authors\":\"John K. Katahara, H. Hillhouse\",\"doi\":\"10.1109/PVSC.2014.6925052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a general model for sub-bandgap absorption that includes the Urbach, Franz-Keldysh, and Thomas-Fermi models as limiting forms. Combination of this absorption scheme with a generalized Kirchhoff law for spontaneous emission of photons yields a model of photoluminescence (PL) with broad applicability to many semiconductors. This model allows for full-spectrum fitting of absolute intensity PL data and outputs: (1) the functional form of sub-bandgap absorption, (2) the energy broadening term (3) the direct bandgap, (4) the local temperature, and (5) the quasi-Fermi Level Splitting (QFLS). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se)2 and Cu2ZnSn(S,Se)4 to reveal the nature of their tail states. The extracted QFLS is shown to accurately predict the open-circuit voltage of devices fabricated from the materials.\",\"PeriodicalId\":6649,\"journal\":{\"name\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"volume\":\"5 1\",\"pages\":\"0866-0868\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2014.6925052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一个通用的亚带隙吸收模型,其中包括厄巴赫,弗兰兹-凯尔迪什和托马斯-费米模型作为限制形式。这种吸收方案与光子自发发射的广义基尔霍夫定律相结合,产生了一种广泛适用于许多半导体的光致发光模型。该模型允许对绝对强度PL数据进行全光谱拟合,并输出:(1)子带隙吸收的函数形式,(2)能量展宽项,(3)直接带隙,(4)局部温度,以及(5)准费米能级分裂(QFLS)。通过对砷化镓室温PL谱的拟合,验证了该模型的准确性。然后将其应用于Cu(In,Ga)(S,Se)2和Cu2ZnSn(S,Se)4,以揭示其尾态的性质。结果表明,所提取的QFLS可以准确地预测由该材料制成的器件的开路电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining the maximum open circuit voltage from absorber photoluminescence in the presence of tail states
We develop a general model for sub-bandgap absorption that includes the Urbach, Franz-Keldysh, and Thomas-Fermi models as limiting forms. Combination of this absorption scheme with a generalized Kirchhoff law for spontaneous emission of photons yields a model of photoluminescence (PL) with broad applicability to many semiconductors. This model allows for full-spectrum fitting of absolute intensity PL data and outputs: (1) the functional form of sub-bandgap absorption, (2) the energy broadening term (3) the direct bandgap, (4) the local temperature, and (5) the quasi-Fermi Level Splitting (QFLS). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se)2 and Cu2ZnSn(S,Se)4 to reveal the nature of their tail states. The extracted QFLS is shown to accurately predict the open-circuit voltage of devices fabricated from the materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信