次对数一致布尔证明网

Q4 Economics, Econometrics and Finance
Clément Aubert
{"title":"次对数一致布尔证明网","authors":"Clément Aubert","doi":"10.4204/EPTCS.75.2","DOIUrl":null,"url":null,"abstract":"Using a proofs-as-programs correspondence, Terui was able to compare two models of parallel computation: Boolean circuits and proof nets for multiplicative linear logic. Mogbil et. al. gave a logspace translation allowing us to compare their computational power as uniform complexity classes. This paper presents a novel translation in AC0 and focuses on a simpler restricted notion of uniform Boolean proof nets. We can then encode constant-depth circuits and compare complexity classes below logspace, which were out of reach with the previous translations.","PeriodicalId":35380,"journal":{"name":"CESifo DICE Report","volume":"25 1","pages":"15-27"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sublogarithmic uniform Boolean proof nets\",\"authors\":\"Clément Aubert\",\"doi\":\"10.4204/EPTCS.75.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a proofs-as-programs correspondence, Terui was able to compare two models of parallel computation: Boolean circuits and proof nets for multiplicative linear logic. Mogbil et. al. gave a logspace translation allowing us to compare their computational power as uniform complexity classes. This paper presents a novel translation in AC0 and focuses on a simpler restricted notion of uniform Boolean proof nets. We can then encode constant-depth circuits and compare complexity classes below logspace, which were out of reach with the previous translations.\",\"PeriodicalId\":35380,\"journal\":{\"name\":\"CESifo DICE Report\",\"volume\":\"25 1\",\"pages\":\"15-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CESifo DICE Report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.75.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CESifo DICE Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.75.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 4

摘要

利用“证明即程序”的对应关系,特瑞能够比较两种并行计算模型:布尔电路和乘法线性逻辑的证明网。Mogbil等人给出了一个对数空间转换,允许我们比较它们作为统一复杂性类的计算能力。本文提出了一种新的AC0转换方法,并着重讨论了一致布尔证明网的一个更简单的限制概念。然后,我们可以对恒深电路进行编码,并比较对数空间以下的复杂度类,这是以前的翻译无法实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sublogarithmic uniform Boolean proof nets
Using a proofs-as-programs correspondence, Terui was able to compare two models of parallel computation: Boolean circuits and proof nets for multiplicative linear logic. Mogbil et. al. gave a logspace translation allowing us to compare their computational power as uniform complexity classes. This paper presents a novel translation in AC0 and focuses on a simpler restricted notion of uniform Boolean proof nets. We can then encode constant-depth circuits and compare complexity classes below logspace, which were out of reach with the previous translations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CESifo DICE Report
CESifo DICE Report Economics, Econometrics and Finance-Economics and Econometrics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信