{"title":"次对数一致布尔证明网","authors":"Clément Aubert","doi":"10.4204/EPTCS.75.2","DOIUrl":null,"url":null,"abstract":"Using a proofs-as-programs correspondence, Terui was able to compare two models of parallel computation: Boolean circuits and proof nets for multiplicative linear logic. Mogbil et. al. gave a logspace translation allowing us to compare their computational power as uniform complexity classes. This paper presents a novel translation in AC0 and focuses on a simpler restricted notion of uniform Boolean proof nets. We can then encode constant-depth circuits and compare complexity classes below logspace, which were out of reach with the previous translations.","PeriodicalId":35380,"journal":{"name":"CESifo DICE Report","volume":"25 1","pages":"15-27"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sublogarithmic uniform Boolean proof nets\",\"authors\":\"Clément Aubert\",\"doi\":\"10.4204/EPTCS.75.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a proofs-as-programs correspondence, Terui was able to compare two models of parallel computation: Boolean circuits and proof nets for multiplicative linear logic. Mogbil et. al. gave a logspace translation allowing us to compare their computational power as uniform complexity classes. This paper presents a novel translation in AC0 and focuses on a simpler restricted notion of uniform Boolean proof nets. We can then encode constant-depth circuits and compare complexity classes below logspace, which were out of reach with the previous translations.\",\"PeriodicalId\":35380,\"journal\":{\"name\":\"CESifo DICE Report\",\"volume\":\"25 1\",\"pages\":\"15-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CESifo DICE Report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.75.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CESifo DICE Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.75.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
Using a proofs-as-programs correspondence, Terui was able to compare two models of parallel computation: Boolean circuits and proof nets for multiplicative linear logic. Mogbil et. al. gave a logspace translation allowing us to compare their computational power as uniform complexity classes. This paper presents a novel translation in AC0 and focuses on a simpler restricted notion of uniform Boolean proof nets. We can then encode constant-depth circuits and compare complexity classes below logspace, which were out of reach with the previous translations.