二元分布的拟合检验

R. C. Dahiya, J. Gurland
{"title":"二元分布的拟合检验","authors":"R. C. Dahiya, J. Gurland","doi":"10.1111/J.2517-6161.1973.TB00973.X","DOIUrl":null,"url":null,"abstract":"Abstract : Tests of fit based on generalized minimum chi-square techniques are developed for bivariate distributions. The asymptotic null distribution of the test statistic is chi square while the asymptotic non-null distribution turns out to be that of a weighted sum of independent non-central chi square variates. The special case of testing the fit of a bivariate normal distribution is investigated in detail and the power is obtained for several alternative families of bivariate distributions. (Author)","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"127 1","pages":"452-465"},"PeriodicalIF":0.0000,"publicationDate":"1973-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Test of Fit for Bivariate Distributions\",\"authors\":\"R. C. Dahiya, J. Gurland\",\"doi\":\"10.1111/J.2517-6161.1973.TB00973.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract : Tests of fit based on generalized minimum chi-square techniques are developed for bivariate distributions. The asymptotic null distribution of the test statistic is chi square while the asymptotic non-null distribution turns out to be that of a weighted sum of independent non-central chi square variates. The special case of testing the fit of a bivariate normal distribution is investigated in detail and the power is obtained for several alternative families of bivariate distributions. (Author)\",\"PeriodicalId\":17425,\"journal\":{\"name\":\"Journal of the royal statistical society series b-methodological\",\"volume\":\"127 1\",\"pages\":\"452-465\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1973-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the royal statistical society series b-methodological\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/J.2517-6161.1973.TB00973.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1973.TB00973.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

摘要:提出了基于广义最小卡方技术的二元分布拟合检验方法。检验统计量的渐近零分布是卡方分布,而渐近非零分布是独立的非中心卡方变量的加权和。详细研究了二元正态分布拟合检验的特殊情况,并给出了几种二元分布的幂次。(作者)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Test of Fit for Bivariate Distributions
Abstract : Tests of fit based on generalized minimum chi-square techniques are developed for bivariate distributions. The asymptotic null distribution of the test statistic is chi square while the asymptotic non-null distribution turns out to be that of a weighted sum of independent non-central chi square variates. The special case of testing the fit of a bivariate normal distribution is investigated in detail and the power is obtained for several alternative families of bivariate distributions. (Author)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信