{"title":"一种优化密文长度和快速解密的基于密文策略属性的加密方案","authors":"Q. Malluhi, Abdullatif Shikfa, V. Trinh","doi":"10.1145/3052973.3052987","DOIUrl":null,"url":null,"abstract":"We address the problem of ciphertext-policy attribute-based encryption with fine access control, a cryptographic primitive which has many concrete application scenarios such as Pay-TV, e-Health, Cloud Storage and so on. In this context we improve on previous LSSS based techniques by building on previous work of Hohenberger and Waters at PKC'13 and proposing a construction that achieves ciphertext size linear in the minimum between the size of the boolean access formula and the number of its clauses. Our construction also supports fast decryption. We also propose two interesting extensions: the first one aims at reducing storage and computation at the user side and is useful in the context of lightweight devices or devices using a cloud operator. The second proposes the use of multiple authorities to mitigate key escrow by the authority.","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"A Ciphertext-Policy Attribute-based Encryption Scheme With Optimized Ciphertext Size And Fast Decryption\",\"authors\":\"Q. Malluhi, Abdullatif Shikfa, V. Trinh\",\"doi\":\"10.1145/3052973.3052987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of ciphertext-policy attribute-based encryption with fine access control, a cryptographic primitive which has many concrete application scenarios such as Pay-TV, e-Health, Cloud Storage and so on. In this context we improve on previous LSSS based techniques by building on previous work of Hohenberger and Waters at PKC'13 and proposing a construction that achieves ciphertext size linear in the minimum between the size of the boolean access formula and the number of its clauses. Our construction also supports fast decryption. We also propose two interesting extensions: the first one aims at reducing storage and computation at the user side and is useful in the context of lightweight devices or devices using a cloud operator. The second proposes the use of multiple authorities to mitigate key escrow by the authority.\",\"PeriodicalId\":20540,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3052973.3052987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3052973.3052987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Ciphertext-Policy Attribute-based Encryption Scheme With Optimized Ciphertext Size And Fast Decryption
We address the problem of ciphertext-policy attribute-based encryption with fine access control, a cryptographic primitive which has many concrete application scenarios such as Pay-TV, e-Health, Cloud Storage and so on. In this context we improve on previous LSSS based techniques by building on previous work of Hohenberger and Waters at PKC'13 and proposing a construction that achieves ciphertext size linear in the minimum between the size of the boolean access formula and the number of its clauses. Our construction also supports fast decryption. We also propose two interesting extensions: the first one aims at reducing storage and computation at the user side and is useful in the context of lightweight devices or devices using a cloud operator. The second proposes the use of multiple authorities to mitigate key escrow by the authority.