探讨盈余呼叫超图的风险预测(学生摘要)

Yi He, Wenxin Tai, Fan Zhou, Yi Yang
{"title":"探讨盈余呼叫超图的风险预测(学生摘要)","authors":"Yi He, Wenxin Tai, Fan Zhou, Yi Yang","doi":"10.1609/aaai.v37i13.26973","DOIUrl":null,"url":null,"abstract":"In financial economics, studies have shown that the textual content in the earnings conference call transcript has predictive power for a firm's future risk. However, the conference call transcript is very long and contains diverse non-relevant content, which poses challenges for the text-based risk forecast. This study investigates the structural dependency within a conference call transcript by explicitly modeling the dialogue between managers and analysts. Specifically, we utilize TextRank to extract information and exploit the semantic correlation within a discussion using hypergraph learning. This novel design can improve the transcript representation performance and reduce the risk of forecast errors. Experimental results on a large-scale dataset show that our approach can significantly improve prediction performance compared to state-of-the-art text-based models.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"47 1","pages":"16226-16227"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Hypergraph of Earnings Call for Risk Prediction (Student Abstract)\",\"authors\":\"Yi He, Wenxin Tai, Fan Zhou, Yi Yang\",\"doi\":\"10.1609/aaai.v37i13.26973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In financial economics, studies have shown that the textual content in the earnings conference call transcript has predictive power for a firm's future risk. However, the conference call transcript is very long and contains diverse non-relevant content, which poses challenges for the text-based risk forecast. This study investigates the structural dependency within a conference call transcript by explicitly modeling the dialogue between managers and analysts. Specifically, we utilize TextRank to extract information and exploit the semantic correlation within a discussion using hypergraph learning. This novel design can improve the transcript representation performance and reduce the risk of forecast errors. Experimental results on a large-scale dataset show that our approach can significantly improve prediction performance compared to state-of-the-art text-based models.\",\"PeriodicalId\":74506,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"volume\":\"47 1\",\"pages\":\"16226-16227\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v37i13.26973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i13.26973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在金融经济学中,研究表明,盈利电话会议记录中的文本内容对公司未来风险具有预测能力。然而,电话会议记录内容较长,不相关内容较多,这对基于文本的风险预测提出了挑战。本研究通过明确建模经理和分析师之间的对话来调查电话会议记录中的结构依赖性。具体来说,我们利用TextRank来提取信息,并利用超图学习来挖掘讨论中的语义相关性。这种新颖的设计可以提高文本表示性能,降低预测错误的风险。在大规模数据集上的实验结果表明,与最先进的基于文本的模型相比,我们的方法可以显著提高预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Hypergraph of Earnings Call for Risk Prediction (Student Abstract)
In financial economics, studies have shown that the textual content in the earnings conference call transcript has predictive power for a firm's future risk. However, the conference call transcript is very long and contains diverse non-relevant content, which poses challenges for the text-based risk forecast. This study investigates the structural dependency within a conference call transcript by explicitly modeling the dialogue between managers and analysts. Specifically, we utilize TextRank to extract information and exploit the semantic correlation within a discussion using hypergraph learning. This novel design can improve the transcript representation performance and reduce the risk of forecast errors. Experimental results on a large-scale dataset show that our approach can significantly improve prediction performance compared to state-of-the-art text-based models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信