{"title":"一类鲁棒双层规划问题的最优性条件和对偶性结果","authors":"Shivani Saini, N. Kailey, I. Ahmad","doi":"10.1051/ro/2023026","DOIUrl":null,"url":null,"abstract":"Robust bi-level programming problems are a newborn branch of optimization theory. In this study, we have considered a bi-level model with constraint-wise uncertainty at the upper-level, and the lower-level problem is fully convex. We use the optimal value reformulation to transform the given bi-level problem into a single-level mathematical problem and the concept of robust counterpart optimization to deal with uncertainty in the upper-level problem. Necessary optimality conditions are beneficial because any local minimum must satisfy these conditions. As a result, one can only look for local (or global) minima among points that hold the necessary optimality conditions. Here we have introduced an extended non-smooth robust constraint qualification (RCQ) and developed the KKT type necessary optimality conditions in terms of convexifactors and subdifferentials for the considered uncertain two-level problem. Further, we establish as an application the robust bi-level Mond-Weir dual (MWD) for the considered problem and produce the duality results. Moreover, an example is proposed to show the applicability of necessary optimality conditions.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality conditions and duality results for a robust bi-level programming problem\",\"authors\":\"Shivani Saini, N. Kailey, I. Ahmad\",\"doi\":\"10.1051/ro/2023026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust bi-level programming problems are a newborn branch of optimization theory. In this study, we have considered a bi-level model with constraint-wise uncertainty at the upper-level, and the lower-level problem is fully convex. We use the optimal value reformulation to transform the given bi-level problem into a single-level mathematical problem and the concept of robust counterpart optimization to deal with uncertainty in the upper-level problem. Necessary optimality conditions are beneficial because any local minimum must satisfy these conditions. As a result, one can only look for local (or global) minima among points that hold the necessary optimality conditions. Here we have introduced an extended non-smooth robust constraint qualification (RCQ) and developed the KKT type necessary optimality conditions in terms of convexifactors and subdifferentials for the considered uncertain two-level problem. Further, we establish as an application the robust bi-level Mond-Weir dual (MWD) for the considered problem and produce the duality results. Moreover, an example is proposed to show the applicability of necessary optimality conditions.\",\"PeriodicalId\":20872,\"journal\":{\"name\":\"RAIRO Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimality conditions and duality results for a robust bi-level programming problem
Robust bi-level programming problems are a newborn branch of optimization theory. In this study, we have considered a bi-level model with constraint-wise uncertainty at the upper-level, and the lower-level problem is fully convex. We use the optimal value reformulation to transform the given bi-level problem into a single-level mathematical problem and the concept of robust counterpart optimization to deal with uncertainty in the upper-level problem. Necessary optimality conditions are beneficial because any local minimum must satisfy these conditions. As a result, one can only look for local (or global) minima among points that hold the necessary optimality conditions. Here we have introduced an extended non-smooth robust constraint qualification (RCQ) and developed the KKT type necessary optimality conditions in terms of convexifactors and subdifferentials for the considered uncertain two-level problem. Further, we establish as an application the robust bi-level Mond-Weir dual (MWD) for the considered problem and produce the duality results. Moreover, an example is proposed to show the applicability of necessary optimality conditions.