{"title":"阿曼Khazzan油田Barik油藏流体分区风险降低的综合方法","authors":"A. Al Anboori, S. Dee, Khalil Al Rashdi, H. Volk","doi":"10.2118/207687-ms","DOIUrl":null,"url":null,"abstract":"\n The degree of fluid compartmentalization has direct implications on the development costs of oil and gas reservoirs, since it may negatively impact gas water contacts (GWC) and fluid condensate gas ratios (CGR). In this case study on the Barik Formation in the giant Khazzan gas field in Block 61 in Oman we demonstrate how integrating independent approaches for assessing potential reservoir compartmentalization can be used to assess compartmentalization risk. The three disciplines that were integrated are structural geology (fault seal analysis, movement and stress stages of faults and fractures, traps geometry over geological time), petroleum systems (fluid chemistry and pressure, charge history) and sedimentology-stratigraphy including diagenesis (sedimentological and diagenetic controls on vertical and lateral facies and reservoir quality variation). Dynamic data from production tests were also analyzed and integrated with the observations above.\n Based on this work, Combined Common Risk Segment (CCRS) maps with a most likely and alternative scenarios for reservoir compartmentalization were constructed. While pressure data carry significant uncertainty due to the tight nature of the deeply buried rocks, it is clear pressures in gas-bearing sections fall onto a single pressure gradient across Block 61, while water pressures indicate variable GWCs. Overall, the GWCs appear to shallow across the field towards the NW, while water pressure appears to increase in that direction. The \"apparent\" gas communication with separate aquifers is difficult to explain conventionally. A range of scenarios for fluid distribution and reservoir connectivity are discussed.\n Fault seal compartmentalization and different trap spill points were found to be the most likely mechanism explaining fluid distribution and likely reservoir compartmentalization. Perched water may be another factor explaining variable GWCs. Hydrodynamic tilting due to the flow of formation water was deemed an unlikely scenario, and the risk of reservoir compartmentalization due to sedimentological and diagenetic flow barriers was deemed to be low.","PeriodicalId":10959,"journal":{"name":"Day 3 Wed, November 17, 2021","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De-Risking Fluid Compartmentalization of the Barik Reservoir in the Khazzan Field, Oman - An Integrated Approach\",\"authors\":\"A. Al Anboori, S. Dee, Khalil Al Rashdi, H. Volk\",\"doi\":\"10.2118/207687-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The degree of fluid compartmentalization has direct implications on the development costs of oil and gas reservoirs, since it may negatively impact gas water contacts (GWC) and fluid condensate gas ratios (CGR). In this case study on the Barik Formation in the giant Khazzan gas field in Block 61 in Oman we demonstrate how integrating independent approaches for assessing potential reservoir compartmentalization can be used to assess compartmentalization risk. The three disciplines that were integrated are structural geology (fault seal analysis, movement and stress stages of faults and fractures, traps geometry over geological time), petroleum systems (fluid chemistry and pressure, charge history) and sedimentology-stratigraphy including diagenesis (sedimentological and diagenetic controls on vertical and lateral facies and reservoir quality variation). Dynamic data from production tests were also analyzed and integrated with the observations above.\\n Based on this work, Combined Common Risk Segment (CCRS) maps with a most likely and alternative scenarios for reservoir compartmentalization were constructed. While pressure data carry significant uncertainty due to the tight nature of the deeply buried rocks, it is clear pressures in gas-bearing sections fall onto a single pressure gradient across Block 61, while water pressures indicate variable GWCs. Overall, the GWCs appear to shallow across the field towards the NW, while water pressure appears to increase in that direction. The \\\"apparent\\\" gas communication with separate aquifers is difficult to explain conventionally. A range of scenarios for fluid distribution and reservoir connectivity are discussed.\\n Fault seal compartmentalization and different trap spill points were found to be the most likely mechanism explaining fluid distribution and likely reservoir compartmentalization. Perched water may be another factor explaining variable GWCs. Hydrodynamic tilting due to the flow of formation water was deemed an unlikely scenario, and the risk of reservoir compartmentalization due to sedimentological and diagenetic flow barriers was deemed to be low.\",\"PeriodicalId\":10959,\"journal\":{\"name\":\"Day 3 Wed, November 17, 2021\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, November 17, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207687-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207687-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
De-Risking Fluid Compartmentalization of the Barik Reservoir in the Khazzan Field, Oman - An Integrated Approach
The degree of fluid compartmentalization has direct implications on the development costs of oil and gas reservoirs, since it may negatively impact gas water contacts (GWC) and fluid condensate gas ratios (CGR). In this case study on the Barik Formation in the giant Khazzan gas field in Block 61 in Oman we demonstrate how integrating independent approaches for assessing potential reservoir compartmentalization can be used to assess compartmentalization risk. The three disciplines that were integrated are structural geology (fault seal analysis, movement and stress stages of faults and fractures, traps geometry over geological time), petroleum systems (fluid chemistry and pressure, charge history) and sedimentology-stratigraphy including diagenesis (sedimentological and diagenetic controls on vertical and lateral facies and reservoir quality variation). Dynamic data from production tests were also analyzed and integrated with the observations above.
Based on this work, Combined Common Risk Segment (CCRS) maps with a most likely and alternative scenarios for reservoir compartmentalization were constructed. While pressure data carry significant uncertainty due to the tight nature of the deeply buried rocks, it is clear pressures in gas-bearing sections fall onto a single pressure gradient across Block 61, while water pressures indicate variable GWCs. Overall, the GWCs appear to shallow across the field towards the NW, while water pressure appears to increase in that direction. The "apparent" gas communication with separate aquifers is difficult to explain conventionally. A range of scenarios for fluid distribution and reservoir connectivity are discussed.
Fault seal compartmentalization and different trap spill points were found to be the most likely mechanism explaining fluid distribution and likely reservoir compartmentalization. Perched water may be another factor explaining variable GWCs. Hydrodynamic tilting due to the flow of formation water was deemed an unlikely scenario, and the risk of reservoir compartmentalization due to sedimentological and diagenetic flow barriers was deemed to be low.