K. Shafie, Mohammad Reza Faridrohani, S. Noorbaloochi, H. Rekabdarkolaee
{"title":"无限维Hilbert空间观测的全局Bayes因子,应用于fMRI信号检测","authors":"K. Shafie, Mohammad Reza Faridrohani, S. Noorbaloochi, H. Rekabdarkolaee","doi":"10.17713/AJS.V50I3.1050","DOIUrl":null,"url":null,"abstract":"Functional Magnetic Resonance Imaging (fMRI) is a fundamental tool in advancing our understanding of the brain's functionality. Recently, a series of Bayesian approaches have been suggested to test for the voxel activation in different brain regions. In this paper, we propose a novel definition for the global Bayes factor to test for activation using the Radon-Nikodym derivative. Our proposed method extends the definition of Bayes factor to an infinite dimensional Hilbert space. Using this extended definition, a Bayesian testing procedure is introduced for signal detection in noisy images when both signal and noise are considered as an element of an infinite dimensional Hilbert space. This new approach is illustrated through a real data analysis to find activated areas of Brain in an fMRI data.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"73 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Global Bayes Factor for Observations on an Infinite-Dimensional Hilbert Space, Applied to Signal Detection in fMRI\",\"authors\":\"K. Shafie, Mohammad Reza Faridrohani, S. Noorbaloochi, H. Rekabdarkolaee\",\"doi\":\"10.17713/AJS.V50I3.1050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional Magnetic Resonance Imaging (fMRI) is a fundamental tool in advancing our understanding of the brain's functionality. Recently, a series of Bayesian approaches have been suggested to test for the voxel activation in different brain regions. In this paper, we propose a novel definition for the global Bayes factor to test for activation using the Radon-Nikodym derivative. Our proposed method extends the definition of Bayes factor to an infinite dimensional Hilbert space. Using this extended definition, a Bayesian testing procedure is introduced for signal detection in noisy images when both signal and noise are considered as an element of an infinite dimensional Hilbert space. This new approach is illustrated through a real data analysis to find activated areas of Brain in an fMRI data.\",\"PeriodicalId\":51761,\"journal\":{\"name\":\"Austrian Journal of Statistics\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austrian Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17713/AJS.V50I3.1050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/AJS.V50I3.1050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A Global Bayes Factor for Observations on an Infinite-Dimensional Hilbert Space, Applied to Signal Detection in fMRI
Functional Magnetic Resonance Imaging (fMRI) is a fundamental tool in advancing our understanding of the brain's functionality. Recently, a series of Bayesian approaches have been suggested to test for the voxel activation in different brain regions. In this paper, we propose a novel definition for the global Bayes factor to test for activation using the Radon-Nikodym derivative. Our proposed method extends the definition of Bayes factor to an infinite dimensional Hilbert space. Using this extended definition, a Bayesian testing procedure is introduced for signal detection in noisy images when both signal and noise are considered as an element of an infinite dimensional Hilbert space. This new approach is illustrated through a real data analysis to find activated areas of Brain in an fMRI data.
期刊介绍:
The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.