天体物理数据流的增量和并行分析

D. Mishin, T. Budavári, A. Szalay, Yanif Ahmad
{"title":"天体物理数据流的增量和并行分析","authors":"D. Mishin, T. Budavári, A. Szalay, Yanif Ahmad","doi":"10.1109/SC.Companion.2012.130","DOIUrl":null,"url":null,"abstract":"Stream processing methods and online algorithms are increasingly appealing in the scientific and large-scale data management communities due to increasing ingestion rates of scientific instruments, the ability to produce and inspect results interactively, and the simplicity and efficiency of sequential storage access over enormous datasets. This article will showcase our experiences in using off-the-shelf streaming technology to implement incremental and parallel spectral analysis of galaxies from the Sloan Digital Sky Survey (SDSS) to detect a wide variety of galaxy features. The technical focus of the article is on a robust, highly scalable principal components analysis (PCA) algorithm and its use of coordination primitives to realize consistency as part of parallel execution. Our algorithm and framework can be readily used in other domains.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"54 1","pages":"1078-1086"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Incremental and Parallel Analytics on Astrophysical Data Streams\",\"authors\":\"D. Mishin, T. Budavári, A. Szalay, Yanif Ahmad\",\"doi\":\"10.1109/SC.Companion.2012.130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stream processing methods and online algorithms are increasingly appealing in the scientific and large-scale data management communities due to increasing ingestion rates of scientific instruments, the ability to produce and inspect results interactively, and the simplicity and efficiency of sequential storage access over enormous datasets. This article will showcase our experiences in using off-the-shelf streaming technology to implement incremental and parallel spectral analysis of galaxies from the Sloan Digital Sky Survey (SDSS) to detect a wide variety of galaxy features. The technical focus of the article is on a robust, highly scalable principal components analysis (PCA) algorithm and its use of coordination primitives to realize consistency as part of parallel execution. Our algorithm and framework can be readily used in other domains.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"54 1\",\"pages\":\"1078-1086\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

流处理方法和在线算法在科学和大规模数据管理社区中越来越有吸引力,因为科学仪器的摄取率越来越高,交互式产生和检查结果的能力,以及对大量数据集进行顺序存储访问的简单性和效率。本文将展示我们使用现成的流技术来实现斯隆数字巡天(SDSS)星系的增量和并行光谱分析的经验,以探测各种各样的星系特征。本文的技术重点是一个健壮的、高度可伸缩的主成分分析(PCA)算法,以及它使用协调原语来实现作为并行执行一部分的一致性。我们的算法和框架可以很容易地应用于其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental and Parallel Analytics on Astrophysical Data Streams
Stream processing methods and online algorithms are increasingly appealing in the scientific and large-scale data management communities due to increasing ingestion rates of scientific instruments, the ability to produce and inspect results interactively, and the simplicity and efficiency of sequential storage access over enormous datasets. This article will showcase our experiences in using off-the-shelf streaming technology to implement incremental and parallel spectral analysis of galaxies from the Sloan Digital Sky Survey (SDSS) to detect a wide variety of galaxy features. The technical focus of the article is on a robust, highly scalable principal components analysis (PCA) algorithm and its use of coordination primitives to realize consistency as part of parallel execution. Our algorithm and framework can be readily used in other domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信