{"title":"具有双扩散对流的Darcy-Brinkman方程的po - rom","authors":"Fatma G. Eroglu, Songul Kaya, L. Rebholz","doi":"10.1515/jnma-2017-0122","DOIUrl":null,"url":null,"abstract":"Abstract This paper extends proper orthogonal decomposition reduced order modeling to flows governed by double diffusive convection, which models flow driven by two potentials with different rates of diffusion. We propose a reduced model based on proper orthogonal decomposition, present a stability and convergence analyses for it, and give results for numerical tests on a benchmark problem which show it is an effective approach to model reduction in this setting.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"POD-ROM for the Darcy–Brinkman equations with double-diffusive convection\",\"authors\":\"Fatma G. Eroglu, Songul Kaya, L. Rebholz\",\"doi\":\"10.1515/jnma-2017-0122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper extends proper orthogonal decomposition reduced order modeling to flows governed by double diffusive convection, which models flow driven by two potentials with different rates of diffusion. We propose a reduced model based on proper orthogonal decomposition, present a stability and convergence analyses for it, and give results for numerical tests on a benchmark problem which show it is an effective approach to model reduction in this setting.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2017-0122\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2017-0122","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
POD-ROM for the Darcy–Brinkman equations with double-diffusive convection
Abstract This paper extends proper orthogonal decomposition reduced order modeling to flows governed by double diffusive convection, which models flow driven by two potentials with different rates of diffusion. We propose a reduced model based on proper orthogonal decomposition, present a stability and convergence analyses for it, and give results for numerical tests on a benchmark problem which show it is an effective approach to model reduction in this setting.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.