{"title":"论几何稳定的保守性","authors":"Tom Bachmann, Maria Yakerson","doi":"10.2140/GT.2020.24.1969","DOIUrl":null,"url":null,"abstract":"We study the interplay of the homotopy coniveau tower, the Rost-Schmid complex of a strictly homotopy invariant sheaf, and homotopy modules. For a strictly homotopy invariant sheaf $M$, smooth $k$-scheme $X$ and $q \\geqslant 0$ we construct a novel cycle complex $C^*(X, M, q)$ and we prove that in favorable cases, $C^*(X, M, q)$ is equivalent to the homotopy coniveau tower $M^{(q)}(X)$. To do so we establish moving lemmas for the Rost-Schmid complex. As an application we deduce a cycle complex model for Milnor-Witt motivic cohomology. Furthermore we prove that if $M$ is a strictly homotopy invariant sheaf, then $M_{-2}$ is a homotopy module. Finally we conjecture that for $q>0$, $\\underline{\\pi}_0(M^{(q)})$ is a homotopy module, explain the significance of this conjecture for studying conservativity properties of the $\\mathbb{G}_m$-stabilization functor $\\mathcal{SH}^{S^1}\\!(k) \\to \\mathcal{SH}(k)$, and provide some evidence for the conjecture.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Towards conservativity of 𝔾m–stabilization\",\"authors\":\"Tom Bachmann, Maria Yakerson\",\"doi\":\"10.2140/GT.2020.24.1969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the interplay of the homotopy coniveau tower, the Rost-Schmid complex of a strictly homotopy invariant sheaf, and homotopy modules. For a strictly homotopy invariant sheaf $M$, smooth $k$-scheme $X$ and $q \\\\geqslant 0$ we construct a novel cycle complex $C^*(X, M, q)$ and we prove that in favorable cases, $C^*(X, M, q)$ is equivalent to the homotopy coniveau tower $M^{(q)}(X)$. To do so we establish moving lemmas for the Rost-Schmid complex. As an application we deduce a cycle complex model for Milnor-Witt motivic cohomology. Furthermore we prove that if $M$ is a strictly homotopy invariant sheaf, then $M_{-2}$ is a homotopy module. Finally we conjecture that for $q>0$, $\\\\underline{\\\\pi}_0(M^{(q)})$ is a homotopy module, explain the significance of this conjecture for studying conservativity properties of the $\\\\mathbb{G}_m$-stabilization functor $\\\\mathcal{SH}^{S^1}\\\\!(k) \\\\to \\\\mathcal{SH}(k)$, and provide some evidence for the conjecture.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/GT.2020.24.1969\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GT.2020.24.1969","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
研究了同伦conveau塔、严格同伦不变束的Rost-Schmid复形和同伦模之间的相互作用。对于严格同伦不变束$M$、光滑$k$ -方案$X$和$q \geqslant 0$,构造了一个新的循环复合体$C^*(X, M, q)$,并证明了在有利情况下,$C^*(X, M, q)$等价于同伦conveau塔$M^{(q)}(X)$。为此,我们建立了罗斯特-施密德复合体的移动引理。作为应用,我们推导了Milnor-Witt动力上同的循环复模型。进一步证明了如果$M$是严格同伦不变轴,则$M_{-2}$是一个同伦模。最后,我们推测对于$q>0$, $\underline{\pi}_0(M^{(q)})$是一个同伦模,解释了这一猜想对于研究$\mathbb{G}_m$ -镇定函子$\mathcal{SH}^{S^1}\!(k) \to \mathcal{SH}(k)$的保守性的意义,并为这一猜想提供了一些证据。
We study the interplay of the homotopy coniveau tower, the Rost-Schmid complex of a strictly homotopy invariant sheaf, and homotopy modules. For a strictly homotopy invariant sheaf $M$, smooth $k$-scheme $X$ and $q \geqslant 0$ we construct a novel cycle complex $C^*(X, M, q)$ and we prove that in favorable cases, $C^*(X, M, q)$ is equivalent to the homotopy coniveau tower $M^{(q)}(X)$. To do so we establish moving lemmas for the Rost-Schmid complex. As an application we deduce a cycle complex model for Milnor-Witt motivic cohomology. Furthermore we prove that if $M$ is a strictly homotopy invariant sheaf, then $M_{-2}$ is a homotopy module. Finally we conjecture that for $q>0$, $\underline{\pi}_0(M^{(q)})$ is a homotopy module, explain the significance of this conjecture for studying conservativity properties of the $\mathbb{G}_m$-stabilization functor $\mathcal{SH}^{S^1}\!(k) \to \mathcal{SH}(k)$, and provide some evidence for the conjecture.
期刊介绍:
Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers.
The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.