一类二阶矢量微分算子的亏缺指标

IF 0.5 Q3 MATHEMATICS
I. N. Braeutigam, K. A. Mirzoev, T. Safonova
{"title":"一类二阶矢量微分算子的亏缺指标","authors":"I. N. Braeutigam, K. A. Mirzoev, T. Safonova","doi":"10.13108/2017-9-1-18","DOIUrl":null,"url":null,"abstract":". In this paper we consider the operators generated by the second order matrix linear symmetric quasi-differential expression on the set [1 , + ∞ ), where 𝑃 − 1 ( 𝑥 ), 𝑄 ( 𝑥 ) are Hermitian matrix functions and 𝑅 ( 𝑥 ) is a complex matrix function of order 𝑛 with entries 𝑝 𝑖𝑗 ( 𝑥 ) , 𝑞 𝑖𝑗 ( 𝑥 ) , 𝑟 𝑖𝑗 ( 𝑥 ) ∈ 𝐿 1 𝑙𝑜𝑐 [1 , + ∞ ) ( 𝑖, 𝑗 = 1 , 2 , . . . , 𝑛 ). We describe the minimal closed symmetric operator 𝐿 0 generated by this expression in the Hilbert space 𝐿 2 𝑛 [1 , + ∞ ). For this operator we prove an analogue of the Orlov’s theorem on the deficiency index of linear scalar differential operators.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"24 1","pages":"18-28"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On deficiency index for some second order vector differential operators\",\"authors\":\"I. N. Braeutigam, K. A. Mirzoev, T. Safonova\",\"doi\":\"10.13108/2017-9-1-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we consider the operators generated by the second order matrix linear symmetric quasi-differential expression on the set [1 , + ∞ ), where 𝑃 − 1 ( 𝑥 ), 𝑄 ( 𝑥 ) are Hermitian matrix functions and 𝑅 ( 𝑥 ) is a complex matrix function of order 𝑛 with entries 𝑝 𝑖𝑗 ( 𝑥 ) , 𝑞 𝑖𝑗 ( 𝑥 ) , 𝑟 𝑖𝑗 ( 𝑥 ) ∈ 𝐿 1 𝑙𝑜𝑐 [1 , + ∞ ) ( 𝑖, 𝑗 = 1 , 2 , . . . , 𝑛 ). We describe the minimal closed symmetric operator 𝐿 0 generated by this expression in the Hilbert space 𝐿 2 𝑛 [1 , + ∞ ). For this operator we prove an analogue of the Orlov’s theorem on the deficiency index of linear scalar differential operators.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"24 1\",\"pages\":\"18-28\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2017-9-1-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-1-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

. 在本文中,我们考虑到运营商产生的二阶矩阵线性对称拟微分表达式在[1,+∞),𝑃−1(𝑥)𝑄(𝑥)埃尔米特矩阵函数和𝑅(𝑥)是一个复杂的矩阵函数的顺序𝑛条目𝑝𝑖𝑗(𝑥)𝑞𝑖𝑗(𝑥)𝑟𝑖𝑗(𝑥)∈𝐿1𝑙𝑜𝑐[1,+∞)(𝑖𝑗= 1、2。,𝑛)。在Hilbert空间𝐿2𝑛[1,+∞]中描述了由该表达式生成的最小闭对称算子𝐿0。对于这个算子,我们证明了关于线性标量微分算子的亏缺指数的Orlov定理的一个类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On deficiency index for some second order vector differential operators
. In this paper we consider the operators generated by the second order matrix linear symmetric quasi-differential expression on the set [1 , + ∞ ), where 𝑃 − 1 ( 𝑥 ), 𝑄 ( 𝑥 ) are Hermitian matrix functions and 𝑅 ( 𝑥 ) is a complex matrix function of order 𝑛 with entries 𝑝 𝑖𝑗 ( 𝑥 ) , 𝑞 𝑖𝑗 ( 𝑥 ) , 𝑟 𝑖𝑗 ( 𝑥 ) ∈ 𝐿 1 𝑙𝑜𝑐 [1 , + ∞ ) ( 𝑖, 𝑗 = 1 , 2 , . . . , 𝑛 ). We describe the minimal closed symmetric operator 𝐿 0 generated by this expression in the Hilbert space 𝐿 2 𝑛 [1 , + ∞ ). For this operator we prove an analogue of the Orlov’s theorem on the deficiency index of linear scalar differential operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信