{"title":"一类二阶矢量微分算子的亏缺指标","authors":"I. N. Braeutigam, K. A. Mirzoev, T. Safonova","doi":"10.13108/2017-9-1-18","DOIUrl":null,"url":null,"abstract":". In this paper we consider the operators generated by the second order matrix linear symmetric quasi-differential expression on the set [1 , + ∞ ), where 𝑃 − 1 ( 𝑥 ), 𝑄 ( 𝑥 ) are Hermitian matrix functions and 𝑅 ( 𝑥 ) is a complex matrix function of order 𝑛 with entries 𝑝 𝑖𝑗 ( 𝑥 ) , 𝑞 𝑖𝑗 ( 𝑥 ) , 𝑟 𝑖𝑗 ( 𝑥 ) ∈ 𝐿 1 𝑙𝑜𝑐 [1 , + ∞ ) ( 𝑖, 𝑗 = 1 , 2 , . . . , 𝑛 ). We describe the minimal closed symmetric operator 𝐿 0 generated by this expression in the Hilbert space 𝐿 2 𝑛 [1 , + ∞ ). For this operator we prove an analogue of the Orlov’s theorem on the deficiency index of linear scalar differential operators.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"24 1","pages":"18-28"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On deficiency index for some second order vector differential operators\",\"authors\":\"I. N. Braeutigam, K. A. Mirzoev, T. Safonova\",\"doi\":\"10.13108/2017-9-1-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we consider the operators generated by the second order matrix linear symmetric quasi-differential expression on the set [1 , + ∞ ), where 𝑃 − 1 ( 𝑥 ), 𝑄 ( 𝑥 ) are Hermitian matrix functions and 𝑅 ( 𝑥 ) is a complex matrix function of order 𝑛 with entries 𝑝 𝑖𝑗 ( 𝑥 ) , 𝑞 𝑖𝑗 ( 𝑥 ) , 𝑟 𝑖𝑗 ( 𝑥 ) ∈ 𝐿 1 𝑙𝑜𝑐 [1 , + ∞ ) ( 𝑖, 𝑗 = 1 , 2 , . . . , 𝑛 ). We describe the minimal closed symmetric operator 𝐿 0 generated by this expression in the Hilbert space 𝐿 2 𝑛 [1 , + ∞ ). For this operator we prove an analogue of the Orlov’s theorem on the deficiency index of linear scalar differential operators.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"24 1\",\"pages\":\"18-28\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2017-9-1-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-1-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On deficiency index for some second order vector differential operators
. In this paper we consider the operators generated by the second order matrix linear symmetric quasi-differential expression on the set [1 , + ∞ ), where 𝑃 − 1 ( 𝑥 ), 𝑄 ( 𝑥 ) are Hermitian matrix functions and 𝑅 ( 𝑥 ) is a complex matrix function of order 𝑛 with entries 𝑝 𝑖𝑗 ( 𝑥 ) , 𝑞 𝑖𝑗 ( 𝑥 ) , 𝑟 𝑖𝑗 ( 𝑥 ) ∈ 𝐿 1 𝑙𝑜𝑐 [1 , + ∞ ) ( 𝑖, 𝑗 = 1 , 2 , . . . , 𝑛 ). We describe the minimal closed symmetric operator 𝐿 0 generated by this expression in the Hilbert space 𝐿 2 𝑛 [1 , + ∞ ). For this operator we prove an analogue of the Orlov’s theorem on the deficiency index of linear scalar differential operators.