多元矩问题:几何与不确定性

IF 1.2 2区 数学 Q1 MATHEMATICS
M. Putinar, C. Scheiderer
{"title":"多元矩问题:几何与不确定性","authors":"M. Putinar, C. Scheiderer","doi":"10.2422/2036-2145.2006.2.01","DOIUrl":null,"url":null,"abstract":"The most accurate determinateness criteria for the multivariate mo- ment problem require the density of polynomials in a weighted Lebesgue space of a generic representing measure. We propose a relaxation of such a criterion to the approximation of a single function, and based on this condition we analyze the impact of the geometry of the support on the uniqueness of the representing mea- sure. In particular we show that a multivariate moment sequence is determinate if its support has dimension one and is virtually compact; a generalization to higher dimensions is also given. Among the one-dimensional sets which are not virtually compact, we show that at least a large subclass supports indeterminate moment sequences. Moreover, we prove that the determinateness of a moment sequence is implied by the same condition (in general easier to verify) of the push-forward sequence via finite morphisms.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"30 1","pages":"137-157"},"PeriodicalIF":1.2000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Multivariate moment problems: Geometry and indeterminateness\",\"authors\":\"M. Putinar, C. Scheiderer\",\"doi\":\"10.2422/2036-2145.2006.2.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most accurate determinateness criteria for the multivariate mo- ment problem require the density of polynomials in a weighted Lebesgue space of a generic representing measure. We propose a relaxation of such a criterion to the approximation of a single function, and based on this condition we analyze the impact of the geometry of the support on the uniqueness of the representing mea- sure. In particular we show that a multivariate moment sequence is determinate if its support has dimension one and is virtually compact; a generalization to higher dimensions is also given. Among the one-dimensional sets which are not virtually compact, we show that at least a large subclass supports indeterminate moment sequences. Moreover, we prove that the determinateness of a moment sequence is implied by the same condition (in general easier to verify) of the push-forward sequence via finite morphisms.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"30 1\",\"pages\":\"137-157\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.2006.2.01\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.2006.2.01","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 28

摘要

对于多变量运动问题,最精确的确定性准则要求在一个一般表示测度的加权勒贝格空间中多项式的密度。我们提出了将这一准则放宽为单个函数的逼近,并在此条件下分析了支撑的几何形状对表示方法唯一性的影响。特别地,我们证明了多元矩序列是确定的,如果它的支持维度为1并且是紧的;并给出了对高维的推广。在非虚紧的一维集合中,我们证明了至少有一个大的子类支持不确定矩序列。此外,我们通过有限态射证明了矩序列的确定性是由推前序列的相同条件(通常更容易验证)所隐含的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate moment problems: Geometry and indeterminateness
The most accurate determinateness criteria for the multivariate mo- ment problem require the density of polynomials in a weighted Lebesgue space of a generic representing measure. We propose a relaxation of such a criterion to the approximation of a single function, and based on this condition we analyze the impact of the geometry of the support on the uniqueness of the representing mea- sure. In particular we show that a multivariate moment sequence is determinate if its support has dimension one and is virtually compact; a generalization to higher dimensions is also given. Among the one-dimensional sets which are not virtually compact, we show that at least a large subclass supports indeterminate moment sequences. Moreover, we prove that the determinateness of a moment sequence is implied by the same condition (in general easier to verify) of the push-forward sequence via finite morphisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信