通过变换处理多孔介质中的非线性瞬态扩散

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
R. Raghavan, Chih-Cheng Chen
{"title":"通过变换处理多孔介质中的非线性瞬态扩散","authors":"R. Raghavan, Chih-Cheng Chen","doi":"10.2516/ogst/2021064","DOIUrl":null,"url":null,"abstract":"The nonlinear differential equation describing flow of a constant compressibility liquid in a porous medium is examined in terms of the Kirchhoff and Cole-Hopf transformations. A quantitative measure of the applicability of representing flow by a slightly compressible liquid – which leads to a linear differential equation, the Theis equation – is identified. The classical Theis problem and the finite-well-radius problem in a system that is infinite in its areal extent are used as prototypes to address concepts discussed. This choice is dictated by the ubiquity of solutions that depend on these archetypal examples for examining transient diffusion. Notwithstanding that the Kirchhoff and Cole-Hopf transformations arrive at a linear differential equation, for the specific purposes of this work – the estimation of the hydraulic properties of rocks, the Kirchhoff transformation is much more advantageous in a number of ways; these are documented. Insights into the structure of the nonlinear solution are provided. The results of this work should prove useful in many contexts of mathematical physics though developed in the framework of applications pertaining to the earth sciences.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing nonlinear transient diffusion in porous media through transformations\",\"authors\":\"R. Raghavan, Chih-Cheng Chen\",\"doi\":\"10.2516/ogst/2021064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinear differential equation describing flow of a constant compressibility liquid in a porous medium is examined in terms of the Kirchhoff and Cole-Hopf transformations. A quantitative measure of the applicability of representing flow by a slightly compressible liquid – which leads to a linear differential equation, the Theis equation – is identified. The classical Theis problem and the finite-well-radius problem in a system that is infinite in its areal extent are used as prototypes to address concepts discussed. This choice is dictated by the ubiquity of solutions that depend on these archetypal examples for examining transient diffusion. Notwithstanding that the Kirchhoff and Cole-Hopf transformations arrive at a linear differential equation, for the specific purposes of this work – the estimation of the hydraulic properties of rocks, the Kirchhoff transformation is much more advantageous in a number of ways; these are documented. Insights into the structure of the nonlinear solution are provided. The results of this work should prove useful in many contexts of mathematical physics though developed in the framework of applications pertaining to the earth sciences.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/ogst/2021064\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2021064","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

用Kirchhoff变换和Cole-Hopf变换研究了描述恒压缩性液体在多孔介质中流动的非线性微分方程。确定了用微可压缩液体来表示流动的适用性的定量测量方法——这导致了一个线性微分方程,即忒伊斯方程。用经典的Theis问题和有限井半径问题作为原型来解决所讨论的概念。这种选择是由无处不在的解决方案决定的,这些解决方案依赖于这些原型例子来检查瞬态扩散。尽管Kirchhoff变换和Cole-Hopf变换得到的是线性微分方程,但对于这项工作的具体目的——估计岩石的水力特性,Kirchhoff变换在许多方面都更加有利;这些都是有记录的。提供了对非线性解的结构的见解。这项工作的结果将在许多数学物理的背景下证明是有用的,尽管它是在与地球科学有关的应用框架中发展起来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing nonlinear transient diffusion in porous media through transformations
The nonlinear differential equation describing flow of a constant compressibility liquid in a porous medium is examined in terms of the Kirchhoff and Cole-Hopf transformations. A quantitative measure of the applicability of representing flow by a slightly compressible liquid – which leads to a linear differential equation, the Theis equation – is identified. The classical Theis problem and the finite-well-radius problem in a system that is infinite in its areal extent are used as prototypes to address concepts discussed. This choice is dictated by the ubiquity of solutions that depend on these archetypal examples for examining transient diffusion. Notwithstanding that the Kirchhoff and Cole-Hopf transformations arrive at a linear differential equation, for the specific purposes of this work – the estimation of the hydraulic properties of rocks, the Kirchhoff transformation is much more advantageous in a number of ways; these are documented. Insights into the structure of the nonlinear solution are provided. The results of this work should prove useful in many contexts of mathematical physics though developed in the framework of applications pertaining to the earth sciences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信