依赖观测下的强一致递归回归估计

K. Chernyshov
{"title":"依赖观测下的强一致递归回归估计","authors":"K. Chernyshov","doi":"10.1109/ISCAS.2000.857381","DOIUrl":null,"url":null,"abstract":"The paper is focused on establishing strong consistency of recursive estimates of nonlinear characteristics of dynamic systems. To describe the shape of the nonlinearities, the regression function kernel type estimates are used. Within the approach presented, a feature of the technique is considering a case of mutually dependent observations. Simultaneously, only mild and easy verified assumptions with respect to the system's input and output processes, as well as to the external disturbances, are involved.","PeriodicalId":6422,"journal":{"name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","volume":"46 1","pages":"133-136 vol.5"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly consistent recursive regression estimation under depended observations\",\"authors\":\"K. Chernyshov\",\"doi\":\"10.1109/ISCAS.2000.857381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is focused on establishing strong consistency of recursive estimates of nonlinear characteristics of dynamic systems. To describe the shape of the nonlinearities, the regression function kernel type estimates are used. Within the approach presented, a feature of the technique is considering a case of mutually dependent observations. Simultaneously, only mild and easy verified assumptions with respect to the system's input and output processes, as well as to the external disturbances, are involved.\",\"PeriodicalId\":6422,\"journal\":{\"name\":\"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)\",\"volume\":\"46 1\",\"pages\":\"133-136 vol.5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2000.857381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2000.857381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究动态系统非线性特性的递推估计的强相合性。为了描述非线性的形状,使用回归函数核类型估计。在提出的方法中,该技术的一个特点是考虑相互依赖观察的情况。同时,对于系统的输入和输出过程,以及外部干扰,只涉及温和且易于验证的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strongly consistent recursive regression estimation under depended observations
The paper is focused on establishing strong consistency of recursive estimates of nonlinear characteristics of dynamic systems. To describe the shape of the nonlinearities, the regression function kernel type estimates are used. Within the approach presented, a feature of the technique is considering a case of mutually dependent observations. Simultaneously, only mild and easy verified assumptions with respect to the system's input and output processes, as well as to the external disturbances, are involved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信