一类混合阶椭圆系统解的分类

IF 1.1 3区 数学 Q1 MATHEMATICS
Genggeng Huang, Yating Niu
{"title":"一类混合阶椭圆系统解的分类","authors":"Genggeng Huang, Yating Niu","doi":"10.3934/dcds.2023079","DOIUrl":null,"url":null,"abstract":"In this paper, we classify the solution of the following mixed-order conformally invariant system with coupled nonlinearity in $ \\mathbb{R}^4$: \\begin{equation}\\left\\{ \\begin{aligned}&-\\Delta u(x) = u^{p_1}(x) e^{q_1v(x)}, \\quad x\\in \\mathbb{R}^4,\\\\&(-\\Delta)^2 v(x) = u^{p_2}(x) e^{q_2v(x)}, \\quad x\\in \\mathbb{R}^4, \\end{aligned} \\right. \\end{equation} where $ 0\\leq p_1<1$, $ p_2>0$, $ q_1>0$, $ q_2 \\geq 0$, $ u>0$ and satisfies $$ \\int_{\\mathbb{R}^4} u^{p_1}(x) e^{q_1v(x)} dx<\\infty,\\quad \\int_{\\mathbb{R}^4} u^{p_2}(x) e^{q_2 v(x)} dx<\\infty.$$ Under additional assumptions (H1) or (H2), we study the asymptotic behavior of the solutions to the system and we establish the equivalent integral formula for the system. By using the method of moving spheres, we obtain the classification results of the solutions in the system.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"13 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of solutions for some mixed order elliptic system\",\"authors\":\"Genggeng Huang, Yating Niu\",\"doi\":\"10.3934/dcds.2023079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we classify the solution of the following mixed-order conformally invariant system with coupled nonlinearity in $ \\\\mathbb{R}^4$: \\\\begin{equation}\\\\left\\\\{ \\\\begin{aligned}&-\\\\Delta u(x) = u^{p_1}(x) e^{q_1v(x)}, \\\\quad x\\\\in \\\\mathbb{R}^4,\\\\\\\\&(-\\\\Delta)^2 v(x) = u^{p_2}(x) e^{q_2v(x)}, \\\\quad x\\\\in \\\\mathbb{R}^4, \\\\end{aligned} \\\\right. \\\\end{equation} where $ 0\\\\leq p_1<1$, $ p_2>0$, $ q_1>0$, $ q_2 \\\\geq 0$, $ u>0$ and satisfies $$ \\\\int_{\\\\mathbb{R}^4} u^{p_1}(x) e^{q_1v(x)} dx<\\\\infty,\\\\quad \\\\int_{\\\\mathbb{R}^4} u^{p_2}(x) e^{q_2 v(x)} dx<\\\\infty.$$ Under additional assumptions (H1) or (H2), we study the asymptotic behavior of the solutions to the system and we establish the equivalent integral formula for the system. By using the method of moving spheres, we obtain the classification results of the solutions in the system.\",\"PeriodicalId\":51007,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023079\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcds.2023079","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文对$ \mathbb{R}^4$: \begin{equation}\left\{ \begin{aligned}&-\Delta u(x) = u^{p_1}(x) e^{q_1v(x)}, \quad x\in \mathbb{R}^4,\\&(-\Delta)^2 v(x) = u^{p_2}(x) e^{q_2v(x)}, \quad x\in \mathbb{R}^4, \end{aligned} \right. \end{equation}中含有$ 0\leq p_10$, $ q_1>0$, $ q_2 \geq 0$, $ u>0$且满足$$ \int_{\mathbb{R}^4} u^{p_1}(x) e^{q_1v(x)} dx<\infty,\quad \int_{\mathbb{R}^4} u^{p_2}(x) e^{q_2 v(x)} dx<\infty.$$的耦合非线性混合阶共形不变系统的解进行了分类,在附加假设(H1)或(H2)下,研究了该系统解的渐近行为,并建立了该系统的等效积分公式。利用运动球的方法,得到了系统解的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of solutions for some mixed order elliptic system
In this paper, we classify the solution of the following mixed-order conformally invariant system with coupled nonlinearity in $ \mathbb{R}^4$: \begin{equation}\left\{ \begin{aligned}&-\Delta u(x) = u^{p_1}(x) e^{q_1v(x)}, \quad x\in \mathbb{R}^4,\\&(-\Delta)^2 v(x) = u^{p_2}(x) e^{q_2v(x)}, \quad x\in \mathbb{R}^4, \end{aligned} \right. \end{equation} where $ 0\leq p_1<1$, $ p_2>0$, $ q_1>0$, $ q_2 \geq 0$, $ u>0$ and satisfies $$ \int_{\mathbb{R}^4} u^{p_1}(x) e^{q_1v(x)} dx<\infty,\quad \int_{\mathbb{R}^4} u^{p_2}(x) e^{q_2 v(x)} dx<\infty.$$ Under additional assumptions (H1) or (H2), we study the asymptotic behavior of the solutions to the system and we establish the equivalent integral formula for the system. By using the method of moving spheres, we obtain the classification results of the solutions in the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信