LEMP的精确和近似最大内积搜索

Christina Teflioudi, Rainer Gemulla
{"title":"LEMP的精确和近似最大内积搜索","authors":"Christina Teflioudi, Rainer Gemulla","doi":"10.1145/2996452","DOIUrl":null,"url":null,"abstract":"We study exact and approximate methods for maximum inner product search, a fundamental problem in a number of data mining and information retrieval tasks. We propose the LEMP framework, which supports both exact and approximate search with quality guarantees. At its heart, LEMP transforms a maximum inner product search problem over a large database of vectors into a number of smaller cosine similarity search problems. This transformation allows LEMP to prune large parts of the search space immediately and to select suitable search algorithms for each of the remaining problems individually. LEMP is able to leverage existing methods for cosine similarity search, but we also provide a number of novel search algorithms tailored to our setting. We conducted an extensive experimental study that provides insight into the performance of many state-of-the-art techniques—including LEMP—on multiple real-world datasets. We found that LEMP often was significantly faster or more accurate than alternative methods.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"1 1","pages":"1 - 49"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Exact and Approximate Maximum Inner Product Search with LEMP\",\"authors\":\"Christina Teflioudi, Rainer Gemulla\",\"doi\":\"10.1145/2996452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study exact and approximate methods for maximum inner product search, a fundamental problem in a number of data mining and information retrieval tasks. We propose the LEMP framework, which supports both exact and approximate search with quality guarantees. At its heart, LEMP transforms a maximum inner product search problem over a large database of vectors into a number of smaller cosine similarity search problems. This transformation allows LEMP to prune large parts of the search space immediately and to select suitable search algorithms for each of the remaining problems individually. LEMP is able to leverage existing methods for cosine similarity search, but we also provide a number of novel search algorithms tailored to our setting. We conducted an extensive experimental study that provides insight into the performance of many state-of-the-art techniques—including LEMP—on multiple real-world datasets. We found that LEMP often was significantly faster or more accurate than alternative methods.\",\"PeriodicalId\":6983,\"journal\":{\"name\":\"ACM Transactions on Database Systems (TODS)\",\"volume\":\"1 1\",\"pages\":\"1 - 49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Database Systems (TODS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

我们研究了最大内积搜索的精确和近似方法,这是许多数据挖掘和信息检索任务中的基本问题。我们提出了LEMP框架,该框架支持精确和近似搜索,并提供质量保证。LEMP的核心是将大型向量数据库上的最大内积搜索问题转换为许多较小的余弦相似度搜索问题。这种转换允许LEMP立即删减搜索空间的大部分,并为每个剩余问题单独选择合适的搜索算法。LEMP能够利用现有的余弦相似度搜索方法,但我们也提供了许多针对我们的设置量身定制的新颖搜索算法。我们进行了一项广泛的实验研究,深入了解了许多最先进的技术(包括lemp)在多个真实数据集上的性能。我们发现LEMP通常比其他方法更快或更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact and Approximate Maximum Inner Product Search with LEMP
We study exact and approximate methods for maximum inner product search, a fundamental problem in a number of data mining and information retrieval tasks. We propose the LEMP framework, which supports both exact and approximate search with quality guarantees. At its heart, LEMP transforms a maximum inner product search problem over a large database of vectors into a number of smaller cosine similarity search problems. This transformation allows LEMP to prune large parts of the search space immediately and to select suitable search algorithms for each of the remaining problems individually. LEMP is able to leverage existing methods for cosine similarity search, but we also provide a number of novel search algorithms tailored to our setting. We conducted an extensive experimental study that provides insight into the performance of many state-of-the-art techniques—including LEMP—on multiple real-world datasets. We found that LEMP often was significantly faster or more accurate than alternative methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信