真实信道数据集中多径聚类估计的可靠性研究

C. Schneider, M. Ibraheam, S. Hafner, M. Kaske, M. Hein, R. Thoma
{"title":"真实信道数据集中多径聚类估计的可靠性研究","authors":"C. Schneider, M. Ibraheam, S. Hafner, M. Kaske, M. Hein, R. Thoma","doi":"10.1109/EUCAP.2014.6901789","DOIUrl":null,"url":null,"abstract":"For the parametrization of geometry based stochastic channel models as from the IST-WINNER or COST 273/IC1004 initiatives large data analysis from channel sounding campaigns play an important role. Whereby the reliability of cluster charaterisation as a post-processing step after the high resolution multipath estimation exhibits a crucial issue. In this contribution a framework for evaluation and development of different cluster algorithms is discussed. Furthermore a novel hierarchical algorithm is introduced and compared to standard K-means and Fuzzy-C-means algorithms. Whereby the new algorithm outperforms the standard algorithms wrt. increasing number and size of clusters.","PeriodicalId":22362,"journal":{"name":"The 8th European Conference on Antennas and Propagation (EuCAP 2014)","volume":"15 1","pages":"449-453"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"On the reliability of multipath cluster estimation in realistic channel data sets\",\"authors\":\"C. Schneider, M. Ibraheam, S. Hafner, M. Kaske, M. Hein, R. Thoma\",\"doi\":\"10.1109/EUCAP.2014.6901789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the parametrization of geometry based stochastic channel models as from the IST-WINNER or COST 273/IC1004 initiatives large data analysis from channel sounding campaigns play an important role. Whereby the reliability of cluster charaterisation as a post-processing step after the high resolution multipath estimation exhibits a crucial issue. In this contribution a framework for evaluation and development of different cluster algorithms is discussed. Furthermore a novel hierarchical algorithm is introduced and compared to standard K-means and Fuzzy-C-means algorithms. Whereby the new algorithm outperforms the standard algorithms wrt. increasing number and size of clusters.\",\"PeriodicalId\":22362,\"journal\":{\"name\":\"The 8th European Conference on Antennas and Propagation (EuCAP 2014)\",\"volume\":\"15 1\",\"pages\":\"449-453\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 8th European Conference on Antennas and Propagation (EuCAP 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUCAP.2014.6901789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th European Conference on Antennas and Propagation (EuCAP 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUCAP.2014.6901789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

对于IST-WINNER或COST 273/IC1004计划中基于几何的随机航道模型的参数化,来自航道探测活动的大数据分析起着重要作用。因此,作为高分辨率多径估计后的后处理步骤的聚类表征的可靠性是一个至关重要的问题。在这篇贡献中,讨论了评估和开发不同聚类算法的框架。此外,还介绍了一种新的分层算法,并与标准的k -均值和模糊c -均值算法进行了比较。因此,新算法优于标准算法wrt。增加集群的数量和规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the reliability of multipath cluster estimation in realistic channel data sets
For the parametrization of geometry based stochastic channel models as from the IST-WINNER or COST 273/IC1004 initiatives large data analysis from channel sounding campaigns play an important role. Whereby the reliability of cluster charaterisation as a post-processing step after the high resolution multipath estimation exhibits a crucial issue. In this contribution a framework for evaluation and development of different cluster algorithms is discussed. Furthermore a novel hierarchical algorithm is introduced and compared to standard K-means and Fuzzy-C-means algorithms. Whereby the new algorithm outperforms the standard algorithms wrt. increasing number and size of clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信