{"title":"红外高光谱测深数据压缩算法","authors":"I. Gladkova, L. Roytman, M. Goldberg","doi":"10.1109/DCC.2005.27","DOIUrl":null,"url":null,"abstract":"Summary form only given. The research is undertaken by NOAA/NESDIS, for its GOES-R Earth observation satellite series, to be launched in the 2013 time frame, to enable greater distribution of its scientific data, both within the US and internationally. We have developed a new lossless algorithm for compression of the signals from NOAA's environmental satellites using current spacecraft to simulate data from the upcoming GOES-R instrument, and focusing on Aqua Spacecraft's AIRS (atmospheric infrared sounder) instrument in our case study. The AIRS is a high resolution instrument which measures infrared radiances at 2378 wavelengths ranging from 3.74-15.4 /spl mu/m. The AIRS takes 90 measurements as it scans 48.95 degrees perpendicular to the satellite's orbit every 2.667 seconds. We use Level 1A digital count data granules, which represent 6 minutes (or 135 scans) of measurements. Therefore, our data set consists of a 90/spl times/135/spl times/1502 cube of integers ranging from 12-14 bits. Our compression algorithm consists of the following steps: 1) channel partitioning; 2) adaptive clustering; 3) projection onto principal directions; 4) entropy coding of the residuals.","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"12 1","pages":"460-"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compression algorithm for infrared hyperspectral sounder data\",\"authors\":\"I. Gladkova, L. Roytman, M. Goldberg\",\"doi\":\"10.1109/DCC.2005.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. The research is undertaken by NOAA/NESDIS, for its GOES-R Earth observation satellite series, to be launched in the 2013 time frame, to enable greater distribution of its scientific data, both within the US and internationally. We have developed a new lossless algorithm for compression of the signals from NOAA's environmental satellites using current spacecraft to simulate data from the upcoming GOES-R instrument, and focusing on Aqua Spacecraft's AIRS (atmospheric infrared sounder) instrument in our case study. The AIRS is a high resolution instrument which measures infrared radiances at 2378 wavelengths ranging from 3.74-15.4 /spl mu/m. The AIRS takes 90 measurements as it scans 48.95 degrees perpendicular to the satellite's orbit every 2.667 seconds. We use Level 1A digital count data granules, which represent 6 minutes (or 135 scans) of measurements. Therefore, our data set consists of a 90/spl times/135/spl times/1502 cube of integers ranging from 12-14 bits. Our compression algorithm consists of the following steps: 1) channel partitioning; 2) adaptive clustering; 3) projection onto principal directions; 4) entropy coding of the residuals.\",\"PeriodicalId\":91161,\"journal\":{\"name\":\"Proceedings. Data Compression Conference\",\"volume\":\"12 1\",\"pages\":\"460-\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2005.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2005.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compression algorithm for infrared hyperspectral sounder data
Summary form only given. The research is undertaken by NOAA/NESDIS, for its GOES-R Earth observation satellite series, to be launched in the 2013 time frame, to enable greater distribution of its scientific data, both within the US and internationally. We have developed a new lossless algorithm for compression of the signals from NOAA's environmental satellites using current spacecraft to simulate data from the upcoming GOES-R instrument, and focusing on Aqua Spacecraft's AIRS (atmospheric infrared sounder) instrument in our case study. The AIRS is a high resolution instrument which measures infrared radiances at 2378 wavelengths ranging from 3.74-15.4 /spl mu/m. The AIRS takes 90 measurements as it scans 48.95 degrees perpendicular to the satellite's orbit every 2.667 seconds. We use Level 1A digital count data granules, which represent 6 minutes (or 135 scans) of measurements. Therefore, our data set consists of a 90/spl times/135/spl times/1502 cube of integers ranging from 12-14 bits. Our compression algorithm consists of the following steps: 1) channel partitioning; 2) adaptive clustering; 3) projection onto principal directions; 4) entropy coding of the residuals.