单层和双层表面等离子体共振光纤化学传感器的比较

Soudad S. Ahmed
{"title":"单层和双层表面等离子体共振光纤化学传感器的比较","authors":"Soudad S. Ahmed","doi":"10.31257/2018/JKP/2020/120205","DOIUrl":null,"url":null,"abstract":"Surface Plasmon Resonance (SPR) - based plastic optical fiber has been provided as a sensor to estimating the refractive index and then the concentration of specific chemical samples. Two configurations were suggested for a design. The first was through using a single layer of gold with a thickness of about 40nm deposited on a 10mm portion in the middle of plastic optical fiber. In the second configuration, a bilayer deposited on the fiber. This bilayer consisted of a gold layer with a thickness of about 30 nm and an aluminum layer with a thickness of about 30 nm. Both of these configurations utilized as a chemical sensor. The resonance wavelength for the bilayer-based sensor was higher than that of the single-layer sensor for all studied chemical samples. The highest resonance wavelength was for the salt-water solution with a concentration of 30%. For the salt-water solution with a concentration of 30%, the resonance wavelength with the bilayer-based sensor was 568nm while it was 540nm with the single-layer sensor.","PeriodicalId":16215,"journal":{"name":"Journal of Kufa - Physics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison between one layer and bilayer surface Plasmon resonance optical fiber chemical sensor\",\"authors\":\"Soudad S. Ahmed\",\"doi\":\"10.31257/2018/JKP/2020/120205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface Plasmon Resonance (SPR) - based plastic optical fiber has been provided as a sensor to estimating the refractive index and then the concentration of specific chemical samples. Two configurations were suggested for a design. The first was through using a single layer of gold with a thickness of about 40nm deposited on a 10mm portion in the middle of plastic optical fiber. In the second configuration, a bilayer deposited on the fiber. This bilayer consisted of a gold layer with a thickness of about 30 nm and an aluminum layer with a thickness of about 30 nm. Both of these configurations utilized as a chemical sensor. The resonance wavelength for the bilayer-based sensor was higher than that of the single-layer sensor for all studied chemical samples. The highest resonance wavelength was for the salt-water solution with a concentration of 30%. For the salt-water solution with a concentration of 30%, the resonance wavelength with the bilayer-based sensor was 568nm while it was 540nm with the single-layer sensor.\",\"PeriodicalId\":16215,\"journal\":{\"name\":\"Journal of Kufa - Physics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Kufa - Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31257/2018/JKP/2020/120205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Kufa - Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31257/2018/JKP/2020/120205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于表面等离子体共振(SPR)的塑料光纤被用作传感器来估计折射率,进而估计特定化学样品的浓度。提出了两种设计方案。第一种方法是在塑料光纤中间的10mm部分上沉积一层厚度约为40nm的单层金。在第二种结构中,双分子层沉积在纤维上。该双分子层由厚度约30 nm的金层和厚度约30 nm的铝层组成。这两种结构都用作化学传感器。在所研究的化学样品中,双层传感器的共振波长均高于单层传感器。当溶液浓度为30%时,共振波长最高。对于浓度为30%的盐水溶液,双层传感器的共振波长为568nm,单层传感器的共振波长为540nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison between one layer and bilayer surface Plasmon resonance optical fiber chemical sensor
Surface Plasmon Resonance (SPR) - based plastic optical fiber has been provided as a sensor to estimating the refractive index and then the concentration of specific chemical samples. Two configurations were suggested for a design. The first was through using a single layer of gold with a thickness of about 40nm deposited on a 10mm portion in the middle of plastic optical fiber. In the second configuration, a bilayer deposited on the fiber. This bilayer consisted of a gold layer with a thickness of about 30 nm and an aluminum layer with a thickness of about 30 nm. Both of these configurations utilized as a chemical sensor. The resonance wavelength for the bilayer-based sensor was higher than that of the single-layer sensor for all studied chemical samples. The highest resonance wavelength was for the salt-water solution with a concentration of 30%. For the salt-water solution with a concentration of 30%, the resonance wavelength with the bilayer-based sensor was 568nm while it was 540nm with the single-layer sensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信