邀请:带宽高效深度学习

Song Han, W. Dally
{"title":"邀请:带宽高效深度学习","authors":"Song Han, W. Dally","doi":"10.1109/DAC.2018.8465812","DOIUrl":null,"url":null,"abstract":"Deep learning algorithms are achieving increasingly higher prediction accuracy on many machine learning tasks. However, applying brute-force programming to data demands a huge amount of machine power to perform training and inference, and a huge amount of manpower to design the neural network models, which is inefficient. In this paper, we provide techniques to solve these bottlenecks: saving memory bandwidth for inference by model compression, saving networking bandwidth for training by gradient compression, and saving engineer bandwidth for model design by using AI to automate the design of models.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"44 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"INVITED: Bandwidth-Efficient Deep Learning\",\"authors\":\"Song Han, W. Dally\",\"doi\":\"10.1109/DAC.2018.8465812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning algorithms are achieving increasingly higher prediction accuracy on many machine learning tasks. However, applying brute-force programming to data demands a huge amount of machine power to perform training and inference, and a huge amount of manpower to design the neural network models, which is inefficient. In this paper, we provide techniques to solve these bottlenecks: saving memory bandwidth for inference by model compression, saving networking bandwidth for training by gradient compression, and saving engineer bandwidth for model design by using AI to automate the design of models.\",\"PeriodicalId\":6491,\"journal\":{\"name\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"volume\":\"44 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAC.2018.8465812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC.2018.8465812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

深度学习算法在许多机器学习任务上的预测精度越来越高。然而,将暴力编程应用于数据需要大量的机器功率来进行训练和推理,并且需要大量的人力来设计神经网络模型,效率低下。在本文中,我们提供了解决这些瓶颈的技术:通过模型压缩节省内存带宽用于推理,通过梯度压缩节省网络带宽用于训练,以及通过使用AI自动设计模型来节省工程师带宽用于模型设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INVITED: Bandwidth-Efficient Deep Learning
Deep learning algorithms are achieving increasingly higher prediction accuracy on many machine learning tasks. However, applying brute-force programming to data demands a huge amount of machine power to perform training and inference, and a huge amount of manpower to design the neural network models, which is inefficient. In this paper, we provide techniques to solve these bottlenecks: saving memory bandwidth for inference by model compression, saving networking bandwidth for training by gradient compression, and saving engineer bandwidth for model design by using AI to automate the design of models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信