{"title":"图数据清理和索引的高效算法","authors":"D. K. Santhosh Kumar, Demain Antony DMello","doi":"10.4018/ijossp.2020070101","DOIUrl":null,"url":null,"abstract":"Information extraction and analysis from the enormous graph data is expanding rapidly. From the survey, it is observed that 80% of researchers spend more than 40% of their project time in data cleaning. This signifies a huge need for data cleaning. Due to the characteristics of big data, the storage and retrieval is another major concern and is addressed by data indexing. The existing data cleaning techniques try to clean the graph data based on information like structural attributes and event log sequences. The cleaning of graph data on a single piece of information alone will not increase the performance of computation. Along with node, the label can also be inconsistent, so it is highly desirable to clean both to improve the performance. This paper addresses aforesaid issue by proposing graph data cleaning algorithm to detect the unstructured information along with inconsistent labeling and clean the data by applying rules and verify based on data inconsistency. The authors propose an indexing algorithm based on CSS-tree to build an efficient and scalable graph indexing on top of Hadoop.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"33 1","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Algorithms for Cleaning and Indexing of Graph data\",\"authors\":\"D. K. Santhosh Kumar, Demain Antony DMello\",\"doi\":\"10.4018/ijossp.2020070101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information extraction and analysis from the enormous graph data is expanding rapidly. From the survey, it is observed that 80% of researchers spend more than 40% of their project time in data cleaning. This signifies a huge need for data cleaning. Due to the characteristics of big data, the storage and retrieval is another major concern and is addressed by data indexing. The existing data cleaning techniques try to clean the graph data based on information like structural attributes and event log sequences. The cleaning of graph data on a single piece of information alone will not increase the performance of computation. Along with node, the label can also be inconsistent, so it is highly desirable to clean both to improve the performance. This paper addresses aforesaid issue by proposing graph data cleaning algorithm to detect the unstructured information along with inconsistent labeling and clean the data by applying rules and verify based on data inconsistency. The authors propose an indexing algorithm based on CSS-tree to build an efficient and scalable graph indexing on top of Hadoop.\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"33 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijossp.2020070101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijossp.2020070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Efficient Algorithms for Cleaning and Indexing of Graph data
Information extraction and analysis from the enormous graph data is expanding rapidly. From the survey, it is observed that 80% of researchers spend more than 40% of their project time in data cleaning. This signifies a huge need for data cleaning. Due to the characteristics of big data, the storage and retrieval is another major concern and is addressed by data indexing. The existing data cleaning techniques try to clean the graph data based on information like structural attributes and event log sequences. The cleaning of graph data on a single piece of information alone will not increase the performance of computation. Along with node, the label can also be inconsistent, so it is highly desirable to clean both to improve the performance. This paper addresses aforesaid issue by proposing graph data cleaning algorithm to detect the unstructured information along with inconsistent labeling and clean the data by applying rules and verify based on data inconsistency. The authors propose an indexing algorithm based on CSS-tree to build an efficient and scalable graph indexing on top of Hadoop.
期刊介绍:
The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.