{"title":"以二硫化钼为基础的固体润滑剂的环保可持续加工","authors":"A. Borgaonkar, I. Syed","doi":"10.1177/13506501231184304","DOIUrl":null,"url":null,"abstract":"Machining is one of the basic and inevitable operations in the manufacturing industry. The machining performance is estimated based on various parameters like cutting forces, surface roughness, tool–chip interface temperature, and specific energy. In the traditional approach, cutting fluids are greatly utilized to dissipate the generated heat during machining, but their utilization causes a threat to nature and human being’s health. Therefore, there emerges a necessity to determine user-friendly, sustainable, and eco-friendly substitutes for traditional cutting fluids. The field of advanced tribology has proposed the usage of solid lubricants due to their inherent properties, such as excellent tribological performance, reduced machining zone temperature due to lowered friction, and enhanced tool life. Therefore, in the present study, pure MoS2 and composite MoS2–TiO2 solid lubricants have been employed in the milling process of AISI 52100 steel with HSS end mill cutter. The machining was carried out in different conditions such as uncoated tool without use of lubricant, uncoated tool with use of lubricant, coated tool without use of lubricant, and coated tool with use of lubricant that were employed to analyze their effect on machining performance. The experimental results showed substantial improvement regarding reduced cutting forces, reduced temperature at tool–chip interface, improved surface finish, and average tool wear with the application of solid lubricants. Among the various lubricating conditions, composite MoS2–TiO2-coated tool with composite MoS2–TiO2 lubricant exhibits excellent machining performance.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"69 1","pages":"1783 - 1795"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly sustainable machining with MoS2-based solid lubricant\",\"authors\":\"A. Borgaonkar, I. Syed\",\"doi\":\"10.1177/13506501231184304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machining is one of the basic and inevitable operations in the manufacturing industry. The machining performance is estimated based on various parameters like cutting forces, surface roughness, tool–chip interface temperature, and specific energy. In the traditional approach, cutting fluids are greatly utilized to dissipate the generated heat during machining, but their utilization causes a threat to nature and human being’s health. Therefore, there emerges a necessity to determine user-friendly, sustainable, and eco-friendly substitutes for traditional cutting fluids. The field of advanced tribology has proposed the usage of solid lubricants due to their inherent properties, such as excellent tribological performance, reduced machining zone temperature due to lowered friction, and enhanced tool life. Therefore, in the present study, pure MoS2 and composite MoS2–TiO2 solid lubricants have been employed in the milling process of AISI 52100 steel with HSS end mill cutter. The machining was carried out in different conditions such as uncoated tool without use of lubricant, uncoated tool with use of lubricant, coated tool without use of lubricant, and coated tool with use of lubricant that were employed to analyze their effect on machining performance. The experimental results showed substantial improvement regarding reduced cutting forces, reduced temperature at tool–chip interface, improved surface finish, and average tool wear with the application of solid lubricants. Among the various lubricating conditions, composite MoS2–TiO2-coated tool with composite MoS2–TiO2 lubricant exhibits excellent machining performance.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"69 1\",\"pages\":\"1783 - 1795\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231184304\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231184304","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Eco-friendly sustainable machining with MoS2-based solid lubricant
Machining is one of the basic and inevitable operations in the manufacturing industry. The machining performance is estimated based on various parameters like cutting forces, surface roughness, tool–chip interface temperature, and specific energy. In the traditional approach, cutting fluids are greatly utilized to dissipate the generated heat during machining, but their utilization causes a threat to nature and human being’s health. Therefore, there emerges a necessity to determine user-friendly, sustainable, and eco-friendly substitutes for traditional cutting fluids. The field of advanced tribology has proposed the usage of solid lubricants due to their inherent properties, such as excellent tribological performance, reduced machining zone temperature due to lowered friction, and enhanced tool life. Therefore, in the present study, pure MoS2 and composite MoS2–TiO2 solid lubricants have been employed in the milling process of AISI 52100 steel with HSS end mill cutter. The machining was carried out in different conditions such as uncoated tool without use of lubricant, uncoated tool with use of lubricant, coated tool without use of lubricant, and coated tool with use of lubricant that were employed to analyze their effect on machining performance. The experimental results showed substantial improvement regarding reduced cutting forces, reduced temperature at tool–chip interface, improved surface finish, and average tool wear with the application of solid lubricants. Among the various lubricating conditions, composite MoS2–TiO2-coated tool with composite MoS2–TiO2 lubricant exhibits excellent machining performance.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).