富(OH,F)方形辉绿石榴石和辉绿石榴石晶体结构的细化

S. Antao, L. Cruickshank
{"title":"富(OH,F)方形辉绿石榴石和辉绿石榴石晶体结构的细化","authors":"S. Antao, L. Cruickshank","doi":"10.1107/S2052520617018248","DOIUrl":null,"url":null,"abstract":"Cubic garnet (space group Ia\\overline 3 d) has the general formula X3Y2Z3O12, where X, Y and Z are cation sites. In the tetragonal garnet (space group I41/acd), the corresponding cation sites are X1 and X2, Y, and Z1 and Z2. In both space groups only the Y site is the same. The crystal chemistry of a tetragonal (OH,F)-rich spessartine sample from Tongbei, near Yunxiao, Fujian Province, China, with composition X(Mn2.82Fe^{2+}_{0.14}Ca0.04)Σ3Y{Al1.95Fe^{3+}_{0.05}}Σ2Z[(SiO4)2.61(O4H4)0.28(F4)0.11]Σ3 (Sps94Alm5Grs1) was studied with single-crystal X-ray diffraction and space group I41/acd. The deviation of the unit-cell parameters from cubic symmetry is small [a = 11.64463 (1), c = 11.65481 (2) A, c/a = 1.0009]. Point analyses and back-scattered electron images, obtained by electron-probe microanalysis, indicate a homogeneous composition. The Z2 site is fully occupied, but the Z1 site contains vacancies. The occupied Z1 and Z2 sites with Si atoms are surrounded by four O atoms, as in anhydrous cubic garnets. Pairs of split sites are O1 with F11 and O2 with O22. When the Z1 site is vacant, a larger [(O2H2)F2] tetrahedron is formed by two OH and two F anions in the O22 and F11 sites, respectively. This [(O2H2)F2] tetrahedron is similar to the O4H4 tetrahedron in hydro­garnets. These results indicate ^{X}{{\\rm Mn}^ {2+}_{3}}\\,^{Y}{\\rm Al}_{2}^{Z}[({\\rm SiO}_{4})_{2}({\\rm O}_{2}{\\rm H}_{2})_{0.5}({\\rm F}_{2})_{0.5}]_{\\Sigma3} as a possible end member, which is yet unknown. The H atom that is bonded to the O22 site is not located because of the small number of OH groups. In contrast, tetragonal henritermierite, ideally ^{X}{\\rm Ca}_{3}\\,^{Y}{\\rm Mn}^{3+}_{2}\\,^{Z}[({\\rm SiO}_{4})_{2}({\\rm O}_{4}{\\rm H}_{4})_1]_{\\Sigma3}, has a vacant Z2 site that contains the O4H4 tetrahedron. The H atom is bonded to an O3 atom [O3—H3 = 0.73 (2) A]. Because of O2—Mn3+—O2 Jahn–Teller elongation of the Mn3+O6 octahedron, a weak hydrogen bond is formed to the under-bonded O2 atom. This causes a large deviation from cubic symmetry (c/a = 0.9534).","PeriodicalId":6887,"journal":{"name":"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry","volume":"1991 1","pages":"104-114"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Crystal structure refinements of tetragonal (OH,F)‐rich spessartine and henritermierite garnets\",\"authors\":\"S. Antao, L. Cruickshank\",\"doi\":\"10.1107/S2052520617018248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cubic garnet (space group Ia\\\\overline 3 d) has the general formula X3Y2Z3O12, where X, Y and Z are cation sites. In the tetragonal garnet (space group I41/acd), the corresponding cation sites are X1 and X2, Y, and Z1 and Z2. In both space groups only the Y site is the same. The crystal chemistry of a tetragonal (OH,F)-rich spessartine sample from Tongbei, near Yunxiao, Fujian Province, China, with composition X(Mn2.82Fe^{2+}_{0.14}Ca0.04)Σ3Y{Al1.95Fe^{3+}_{0.05}}Σ2Z[(SiO4)2.61(O4H4)0.28(F4)0.11]Σ3 (Sps94Alm5Grs1) was studied with single-crystal X-ray diffraction and space group I41/acd. The deviation of the unit-cell parameters from cubic symmetry is small [a = 11.64463 (1), c = 11.65481 (2) A, c/a = 1.0009]. Point analyses and back-scattered electron images, obtained by electron-probe microanalysis, indicate a homogeneous composition. The Z2 site is fully occupied, but the Z1 site contains vacancies. The occupied Z1 and Z2 sites with Si atoms are surrounded by four O atoms, as in anhydrous cubic garnets. Pairs of split sites are O1 with F11 and O2 with O22. When the Z1 site is vacant, a larger [(O2H2)F2] tetrahedron is formed by two OH and two F anions in the O22 and F11 sites, respectively. This [(O2H2)F2] tetrahedron is similar to the O4H4 tetrahedron in hydro­garnets. These results indicate ^{X}{{\\\\rm Mn}^ {2+}_{3}}\\\\,^{Y}{\\\\rm Al}_{2}^{Z}[({\\\\rm SiO}_{4})_{2}({\\\\rm O}_{2}{\\\\rm H}_{2})_{0.5}({\\\\rm F}_{2})_{0.5}]_{\\\\Sigma3} as a possible end member, which is yet unknown. The H atom that is bonded to the O22 site is not located because of the small number of OH groups. In contrast, tetragonal henritermierite, ideally ^{X}{\\\\rm Ca}_{3}\\\\,^{Y}{\\\\rm Mn}^{3+}_{2}\\\\,^{Z}[({\\\\rm SiO}_{4})_{2}({\\\\rm O}_{4}{\\\\rm H}_{4})_1]_{\\\\Sigma3}, has a vacant Z2 site that contains the O4H4 tetrahedron. The H atom is bonded to an O3 atom [O3—H3 = 0.73 (2) A]. Because of O2—Mn3+—O2 Jahn–Teller elongation of the Mn3+O6 octahedron, a weak hydrogen bond is formed to the under-bonded O2 atom. This causes a large deviation from cubic symmetry (c/a = 0.9534).\",\"PeriodicalId\":6887,\"journal\":{\"name\":\"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry\",\"volume\":\"1991 1\",\"pages\":\"104-114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1107/S2052520617018248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/S2052520617018248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

立方石榴石(空间群Ia \overline 3d)通式为X3Y2Z3O12,其中X、Y、Z为正离子位。在四边形石榴石(空间群I41/ add)中,对应的正离子位点分别为X1和X2、Y、Z1和Z2。在两个空间群中,只有Y点是相同的。用{单晶X射线衍射和空间群I41/acd研究}了福建云肖同北富(OH,F)四方(mn2 .82 - fe ^{2+}_0.{14Ca0{.04)Σ}3YAl1.95Fe^{3+}}_0{.05Σ2Z[(SiO4)2.61(O4H4)0.28(F4)0.11]Σ3 (Sps94Alm5Grs1)样品的晶体化学性质。单位胞参数与立方对称的偏差较小[a = 11.64463 (1), c = 11.65481 (2) a, c/a = 1.0009]。点分析和电子探针显微分析获得的背散射电子图像表明其成分均匀。Z2位点被完全占用,但Z1位点有空位。与无水立方石榴石一样,Si原子占据的Z1和Z2位点被四个O原子包围。对分裂位点是O1与F11和O2与O22。当Z1位空时,在O22和F11位上分别由两个OH和两个F阴离子形成一个更大的[(O2H2)F2]四面体。[(O2H2)F2]四面体与水石榴石中的O4H4四面体相似。这些结果表明^X }{{\rmMn}^ {2+}_3{\,^}}Y{ Al_2}{\rm^}Z{[}({SiO_4}){\rm_2}({O_2} H_2{)}_0.5{\rm(F_2)}_0.5{]_ }{\rm}{}{}{\rm}{}{}{\Sigma 3}是可能的端元,但尚未确定。由于氢氧根的数量很少,所以与O22相连的H原子没有被定位。相反,理想情况下,^ X {Ca_3}{\rm\,^}Y{ Mn^3}+{_2}{\rm\,}^{Z}[({SiO_4})_2{(}O_4{\rm H_4})_1]_ {}{}{\rm}{}{\rm}{}{\Sigma 3,}具有一个含有O4H4四面体的空Z2位。H原子与O3原子成键[O3 - h3 = 0.73 (2) A]。由于Mn3+O6八面体的O2 - Mn3+ -O2 Jahn-Teller伸长,与欠键O2原子形成弱氢键。这将导致与立方对称(c/a = 0.9534)的巨大偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystal structure refinements of tetragonal (OH,F)‐rich spessartine and henritermierite garnets
Cubic garnet (space group Ia\overline 3 d) has the general formula X3Y2Z3O12, where X, Y and Z are cation sites. In the tetragonal garnet (space group I41/acd), the corresponding cation sites are X1 and X2, Y, and Z1 and Z2. In both space groups only the Y site is the same. The crystal chemistry of a tetragonal (OH,F)-rich spessartine sample from Tongbei, near Yunxiao, Fujian Province, China, with composition X(Mn2.82Fe^{2+}_{0.14}Ca0.04)Σ3Y{Al1.95Fe^{3+}_{0.05}}Σ2Z[(SiO4)2.61(O4H4)0.28(F4)0.11]Σ3 (Sps94Alm5Grs1) was studied with single-crystal X-ray diffraction and space group I41/acd. The deviation of the unit-cell parameters from cubic symmetry is small [a = 11.64463 (1), c = 11.65481 (2) A, c/a = 1.0009]. Point analyses and back-scattered electron images, obtained by electron-probe microanalysis, indicate a homogeneous composition. The Z2 site is fully occupied, but the Z1 site contains vacancies. The occupied Z1 and Z2 sites with Si atoms are surrounded by four O atoms, as in anhydrous cubic garnets. Pairs of split sites are O1 with F11 and O2 with O22. When the Z1 site is vacant, a larger [(O2H2)F2] tetrahedron is formed by two OH and two F anions in the O22 and F11 sites, respectively. This [(O2H2)F2] tetrahedron is similar to the O4H4 tetrahedron in hydro­garnets. These results indicate ^{X}{{\rm Mn}^ {2+}_{3}}\,^{Y}{\rm Al}_{2}^{Z}[({\rm SiO}_{4})_{2}({\rm O}_{2}{\rm H}_{2})_{0.5}({\rm F}_{2})_{0.5}]_{\Sigma3} as a possible end member, which is yet unknown. The H atom that is bonded to the O22 site is not located because of the small number of OH groups. In contrast, tetragonal henritermierite, ideally ^{X}{\rm Ca}_{3}\,^{Y}{\rm Mn}^{3+}_{2}\,^{Z}[({\rm SiO}_{4})_{2}({\rm O}_{4}{\rm H}_{4})_1]_{\Sigma3}, has a vacant Z2 site that contains the O4H4 tetrahedron. The H atom is bonded to an O3 atom [O3—H3 = 0.73 (2) A]. Because of O2—Mn3+—O2 Jahn–Teller elongation of the Mn3+O6 octahedron, a weak hydrogen bond is formed to the under-bonded O2 atom. This causes a large deviation from cubic symmetry (c/a = 0.9534).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信