具有有限基群的4-流形的2-稳定分类

Daniel Kasprowski, P. Teichner
{"title":"具有有限基群的4-流形的2-稳定分类","authors":"Daniel Kasprowski, P. Teichner","doi":"10.2140/PJM.2021.310.355","DOIUrl":null,"url":null,"abstract":"We show that two closed, connected $4$-manifolds with finite fundamental groups are $\\mathbb{CP}^2$-stably homeomorphic if and only if their quadratic $2$-types are stably isomorphic and their Kirby-Siebenmann invariant agrees.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"ℂℙ2-stable classification of 4-manifolds with\\nfinite fundamental group\",\"authors\":\"Daniel Kasprowski, P. Teichner\",\"doi\":\"10.2140/PJM.2021.310.355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that two closed, connected $4$-manifolds with finite fundamental groups are $\\\\mathbb{CP}^2$-stably homeomorphic if and only if their quadratic $2$-types are stably isomorphic and their Kirby-Siebenmann invariant agrees.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/PJM.2021.310.355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/PJM.2021.310.355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

证明了具有有限基本群的两个封闭的连通$4$-流形是$\mathbb{CP}^2$-稳定同纯的当且仅当它们的二次$2$-类型是稳定同构的并且它们的Kirby-Siebenmann不变量是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ℂℙ2-stable classification of 4-manifolds with finite fundamental group
We show that two closed, connected $4$-manifolds with finite fundamental groups are $\mathbb{CP}^2$-stably homeomorphic if and only if their quadratic $2$-types are stably isomorphic and their Kirby-Siebenmann invariant agrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信