基于矩型信息结构的效用偏好鲁棒优化

IF 0.7 4区 管理学 Q3 Engineering
Shaoyan Guo, Huifu Xu, Sainan Zhang
{"title":"基于矩型信息结构的效用偏好鲁棒优化","authors":"Shaoyan Guo, Huifu Xu, Sainan Zhang","doi":"10.1287/opre.2023.2464","DOIUrl":null,"url":null,"abstract":"Utility Preference Robust Optimization with Moment-Type Information Structure In some decision-making problems, information on the true utility function of the decision maker may be incomplete, which may bring potential modeling risk. In “Utility Preference Robust Optimization with Moment-Type Information Structure,” Guo, Xu, and Zhang propose a maximin utility preference robust optimization model where information about the DM’s preference is constructed by moment-type conditions. The authors propose a piecewise linear approximation approach to tackle the maximin problem, reformulate the approximate problem as a single mixed integer linear program, and derive error bounds for the approximate ambiguity set, the optimal value, and the optimal solutions. To examine the performance of the model and the computational schemes, they carry out extensive numerical tests and demonstrate the effectiveness of the model and efficiency of the computational methods.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"66 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Utility Preference Robust Optimization with Moment-Type Information Structure\",\"authors\":\"Shaoyan Guo, Huifu Xu, Sainan Zhang\",\"doi\":\"10.1287/opre.2023.2464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utility Preference Robust Optimization with Moment-Type Information Structure In some decision-making problems, information on the true utility function of the decision maker may be incomplete, which may bring potential modeling risk. In “Utility Preference Robust Optimization with Moment-Type Information Structure,” Guo, Xu, and Zhang propose a maximin utility preference robust optimization model where information about the DM’s preference is constructed by moment-type conditions. The authors propose a piecewise linear approximation approach to tackle the maximin problem, reformulate the approximate problem as a single mixed integer linear program, and derive error bounds for the approximate ambiguity set, the optimal value, and the optimal solutions. To examine the performance of the model and the computational schemes, they carry out extensive numerical tests and demonstrate the effectiveness of the model and efficiency of the computational methods.\",\"PeriodicalId\":49809,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2023.2464\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2023.2464","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7

摘要

基于矩型信息结构的效用偏好鲁棒优化在某些决策问题中,关于决策者真实效用函数的信息可能是不完整的,这可能带来潜在的建模风险。在“时刻型信息结构下的效用偏好鲁棒优化”一文中,Guo、Xu和Zhang提出了一个效用偏好最大化鲁棒优化模型,其中关于决策者偏好的信息是由时刻型条件构建的。作者提出了一种分段线性逼近方法来解决极大值问题,将近似问题重新表述为单个混合整数线性规划,并推导出近似模糊集、最优值和最优解的误差界。为了检验模型和计算方案的性能,他们进行了大量的数值试验,并证明了模型的有效性和计算方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utility Preference Robust Optimization with Moment-Type Information Structure
Utility Preference Robust Optimization with Moment-Type Information Structure In some decision-making problems, information on the true utility function of the decision maker may be incomplete, which may bring potential modeling risk. In “Utility Preference Robust Optimization with Moment-Type Information Structure,” Guo, Xu, and Zhang propose a maximin utility preference robust optimization model where information about the DM’s preference is constructed by moment-type conditions. The authors propose a piecewise linear approximation approach to tackle the maximin problem, reformulate the approximate problem as a single mixed integer linear program, and derive error bounds for the approximate ambiguity set, the optimal value, and the optimal solutions. To examine the performance of the model and the computational schemes, they carry out extensive numerical tests and demonstrate the effectiveness of the model and efficiency of the computational methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Military Operations Research
Military Operations Research 管理科学-运筹学与管理科学
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信