启用变更探索:远景文件

Tobias Bleifuß, T. Johnson, D. Kalashnikov, Felix Naumann, Vladislav Shkapenyuk, D. Srivastava
{"title":"启用变更探索:远景文件","authors":"Tobias Bleifuß, T. Johnson, D. Kalashnikov, Felix Naumann, Vladislav Shkapenyuk, D. Srivastava","doi":"10.1145/3077331.3077340","DOIUrl":null,"url":null,"abstract":"Data and metadata suffer many different kinds of change: values are inserted, deleted or updated; entities appear and disappear; properties are added or re-purposed, etc. Explicitly recognizing, exploring, and evaluating such change can alert to changes in data ingestion procedures, can help assess data quality, and can improve the general understanding of the dataset and its behavior over time. We propose a data model-independent framework to formalize such change. Our change-cube enables exploration and discovery of such changes to reveal dataset behavior over time.","PeriodicalId":92430,"journal":{"name":"Proceedings of the ExploreDB'17. International Workshop on Exploratory Search in Databases and the Web (4th : 2017 : Chicago, Ill.)","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enabling Change Exploration: Vision Paper\",\"authors\":\"Tobias Bleifuß, T. Johnson, D. Kalashnikov, Felix Naumann, Vladislav Shkapenyuk, D. Srivastava\",\"doi\":\"10.1145/3077331.3077340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data and metadata suffer many different kinds of change: values are inserted, deleted or updated; entities appear and disappear; properties are added or re-purposed, etc. Explicitly recognizing, exploring, and evaluating such change can alert to changes in data ingestion procedures, can help assess data quality, and can improve the general understanding of the dataset and its behavior over time. We propose a data model-independent framework to formalize such change. Our change-cube enables exploration and discovery of such changes to reveal dataset behavior over time.\",\"PeriodicalId\":92430,\"journal\":{\"name\":\"Proceedings of the ExploreDB'17. International Workshop on Exploratory Search in Databases and the Web (4th : 2017 : Chicago, Ill.)\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ExploreDB'17. International Workshop on Exploratory Search in Databases and the Web (4th : 2017 : Chicago, Ill.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3077331.3077340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ExploreDB'17. International Workshop on Exploratory Search in Databases and the Web (4th : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077331.3077340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据和元数据遭受许多不同类型的变化:值被插入、删除或更新;实体出现又消失;添加属性或重新使用属性等。明确地识别、探索和评估这种变化可以提醒数据摄取过程中的变化,可以帮助评估数据质量,并且可以随着时间的推移提高对数据集及其行为的总体理解。我们提出了一个独立于数据模型的框架来形式化这种变化。我们的更改多维数据集支持探索和发现这些更改,以揭示数据集随时间的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling Change Exploration: Vision Paper
Data and metadata suffer many different kinds of change: values are inserted, deleted or updated; entities appear and disappear; properties are added or re-purposed, etc. Explicitly recognizing, exploring, and evaluating such change can alert to changes in data ingestion procedures, can help assess data quality, and can improve the general understanding of the dataset and its behavior over time. We propose a data model-independent framework to formalize such change. Our change-cube enables exploration and discovery of such changes to reveal dataset behavior over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信