Yuzhu Guo, Xudong Chen, Jin Wu, Tao Ji, Yingjie Ning
{"title":"基于声发射的喷岩界面裂缝定量可视化监测","authors":"Yuzhu Guo, Xudong Chen, Jin Wu, Tao Ji, Yingjie Ning","doi":"10.1155/2023/9958905","DOIUrl":null,"url":null,"abstract":"<div>\n <p>To investigate the possibility of quantitative monitoring of the fracture process zone (FPZ) at the shotcrete-rock interface, the acoustic emission (AE) and digital image correlation (DIC) are used to monitor the three-point bending test of shotcrete-rock specimens. Firstly, the AE intensity signal characteristics during damage to the shotcrete-rock interface are analyzed. Then, the spatial <i>b</i>-value of AE is used to visually characterize the shotcrete-rock interface damage, and the interface damage characteristics of two specimens, shotcrete-granite and shotcrete-sandstone, are analyzed using this analysis method. The analysis reveals that not only the AE spatial <i>b</i>-value can determine the location of microdamage within the interface but it can also characterize the degree of damage. Finally, a new parameter, <i>Tb</i>-value, is constructed based on the AE spatial <i>b</i>-value to quantitatively characterize the FPZ, and the newly established characterization method is validated with the FPZ monitored by DIC. The results show that the <i>Tb</i>-value not only locates and visually characterizes the location of the FPZ within the specimen but also enables the quantitative determination of the FPZ. This provides a new idea for localizing and quantitatively monitoring cracks and FPZs inside structures using AE techniques.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2023 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/9958905","citationCount":"0","resultStr":"{\"title\":\"Quantitative Visualization Monitoring of Cracks at Shotcrete-Rock Interface Based on Acoustic Emission\",\"authors\":\"Yuzhu Guo, Xudong Chen, Jin Wu, Tao Ji, Yingjie Ning\",\"doi\":\"10.1155/2023/9958905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>To investigate the possibility of quantitative monitoring of the fracture process zone (FPZ) at the shotcrete-rock interface, the acoustic emission (AE) and digital image correlation (DIC) are used to monitor the three-point bending test of shotcrete-rock specimens. Firstly, the AE intensity signal characteristics during damage to the shotcrete-rock interface are analyzed. Then, the spatial <i>b</i>-value of AE is used to visually characterize the shotcrete-rock interface damage, and the interface damage characteristics of two specimens, shotcrete-granite and shotcrete-sandstone, are analyzed using this analysis method. The analysis reveals that not only the AE spatial <i>b</i>-value can determine the location of microdamage within the interface but it can also characterize the degree of damage. Finally, a new parameter, <i>Tb</i>-value, is constructed based on the AE spatial <i>b</i>-value to quantitatively characterize the FPZ, and the newly established characterization method is validated with the FPZ monitored by DIC. The results show that the <i>Tb</i>-value not only locates and visually characterizes the location of the FPZ within the specimen but also enables the quantitative determination of the FPZ. This provides a new idea for localizing and quantitatively monitoring cracks and FPZs inside structures using AE techniques.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2023 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/9958905\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2023/9958905\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/9958905","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Quantitative Visualization Monitoring of Cracks at Shotcrete-Rock Interface Based on Acoustic Emission
To investigate the possibility of quantitative monitoring of the fracture process zone (FPZ) at the shotcrete-rock interface, the acoustic emission (AE) and digital image correlation (DIC) are used to monitor the three-point bending test of shotcrete-rock specimens. Firstly, the AE intensity signal characteristics during damage to the shotcrete-rock interface are analyzed. Then, the spatial b-value of AE is used to visually characterize the shotcrete-rock interface damage, and the interface damage characteristics of two specimens, shotcrete-granite and shotcrete-sandstone, are analyzed using this analysis method. The analysis reveals that not only the AE spatial b-value can determine the location of microdamage within the interface but it can also characterize the degree of damage. Finally, a new parameter, Tb-value, is constructed based on the AE spatial b-value to quantitatively characterize the FPZ, and the newly established characterization method is validated with the FPZ monitored by DIC. The results show that the Tb-value not only locates and visually characterizes the location of the FPZ within the specimen but also enables the quantitative determination of the FPZ. This provides a new idea for localizing and quantitatively monitoring cracks and FPZs inside structures using AE techniques.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.