曲率估计和形状分解的轮廓模型

Q4 Computer Science
K. Eom, Juha Park
{"title":"曲率估计和形状分解的轮廓模型","authors":"K. Eom, Juha Park","doi":"10.1109/ICPR.1992.201800","DOIUrl":null,"url":null,"abstract":"A statistical contour model is developed. A digital contour is modeled by a noisy observation which is represented by polynomial functions of coordinate variables. To estimate curvature functions of digital contours, the authors develop maximum likelihood estimators by fitting the model over a small neighborhood. The neighborhood size is determined by a maximum likelihood decision rule. Statistical properties of the estimators are also investigated. The contour is decomposed at curvature extrema points by finding zero-crossings of the first derivative of estimated curvature function. Experimental results show that the model based approach performs better in estimating curvature functions and detecting extrema points than other conventional approaches based on low-pass filtered curvature functions.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"19 1","pages":"393-396"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Contour models for curvature estimation and shape decomposition\",\"authors\":\"K. Eom, Juha Park\",\"doi\":\"10.1109/ICPR.1992.201800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A statistical contour model is developed. A digital contour is modeled by a noisy observation which is represented by polynomial functions of coordinate variables. To estimate curvature functions of digital contours, the authors develop maximum likelihood estimators by fitting the model over a small neighborhood. The neighborhood size is determined by a maximum likelihood decision rule. Statistical properties of the estimators are also investigated. The contour is decomposed at curvature extrema points by finding zero-crossings of the first derivative of estimated curvature function. Experimental results show that the model based approach performs better in estimating curvature functions and detecting extrema points than other conventional approaches based on low-pass filtered curvature functions.<<ETX>>\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":\"19 1\",\"pages\":\"393-396\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

建立了统计轮廓模型。数字轮廓是由一个由坐标变量的多项式函数表示的噪声观测来建模的。为了估计数字轮廓的曲率函数,作者通过在小邻域上拟合模型来开发最大似然估计。邻域大小由最大似然决策规则确定。研究了估计量的统计性质。通过求曲率函数估计的一阶导数的过零点,在曲率极值点处对轮廓进行分解。实验结果表明,与基于低通滤波曲率函数的传统方法相比,基于模型的方法在曲率函数估计和极值点检测方面具有更好的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contour models for curvature estimation and shape decomposition
A statistical contour model is developed. A digital contour is modeled by a noisy observation which is represented by polynomial functions of coordinate variables. To estimate curvature functions of digital contours, the authors develop maximum likelihood estimators by fitting the model over a small neighborhood. The neighborhood size is determined by a maximum likelihood decision rule. Statistical properties of the estimators are also investigated. The contour is decomposed at curvature extrema points by finding zero-crossings of the first derivative of estimated curvature function. Experimental results show that the model based approach performs better in estimating curvature functions and detecting extrema points than other conventional approaches based on low-pass filtered curvature functions.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信