非线性分数阶微分方程边值问题正解的存在唯一性

C. Gu, S. Zhong
{"title":"非线性分数阶微分方程边值问题正解的存在唯一性","authors":"C. Gu, S. Zhong","doi":"10.5281/ZENODO.1336310","DOIUrl":null,"url":null,"abstract":"In this paper,by using of new fixed point theorem for mixed monotone operator with perturbation,the existence and uniqueness of positive solution for nonlinear fractional differential equation boundary value problem is concerned. Our results can not only guarantee the existence and uniqueness of positive solution,but also be applied to construct an iterative scheme for approximating the solution.","PeriodicalId":23764,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","volume":"1 1","pages":"1549-1552"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation Boundary Value Problem\",\"authors\":\"C. Gu, S. Zhong\",\"doi\":\"10.5281/ZENODO.1336310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper,by using of new fixed point theorem for mixed monotone operator with perturbation,the existence and uniqueness of positive solution for nonlinear fractional differential equation boundary value problem is concerned. Our results can not only guarantee the existence and uniqueness of positive solution,but also be applied to construct an iterative scheme for approximating the solution.\",\"PeriodicalId\":23764,\"journal\":{\"name\":\"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering\",\"volume\":\"1 1\",\"pages\":\"1549-1552\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.1336310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.1336310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用摄动混合单调算子的新不动点定理,研究了非线性分数阶微分方程边值问题正解的存在唯一性。我们的结果不仅可以保证正解的存在唯一性,而且可以用于构造逼近解的迭代格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation Boundary Value Problem
In this paper,by using of new fixed point theorem for mixed monotone operator with perturbation,the existence and uniqueness of positive solution for nonlinear fractional differential equation boundary value problem is concerned. Our results can not only guarantee the existence and uniqueness of positive solution,but also be applied to construct an iterative scheme for approximating the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信