基于好奇遗传的云计算负载平衡狼优化

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Suman Sansanwal, Nitin Jain
{"title":"基于好奇遗传的云计算负载平衡狼优化","authors":"Suman Sansanwal, Nitin Jain","doi":"10.2478/acss-2023-0017","DOIUrl":null,"url":null,"abstract":"Abstract Cloud remains an active and dominant player in the field of information technology. Hence, to meet the rapidly growing requirement of computational processes and storage resources, the cloud provider deploys efficient data centres globally that comprise thousands of IT servers. Because of tremendous energy and resource utilization, a reliable cloud platform has to be necessarily optimized. Effective load balancing is a great option to overcome these issues. However, loading balancing difficulties, such as increased computational complexity, the chance of losing the client data during task rescheduling, and consuming huge memory of the host, and new VM (Virtual Machine), need appropriate optimization. Hence, the study aims to create a newly developed IG-WA (Inquisitive Genetic–Wolf Optimization) framework that meritoriously detects the optimized virtual machine in an environment. For this purpose, the system utilises the GWO (Grey Wolf Optimization) method with an evolutionary mechanism for achieving a proper compromise between exploitation and exploration, thereby accelerating the convergence and achieving optimized accuracy. Furthermore, the fitness function evaluated with an inquisitive genetic algorithm adds value to the overall efficacy. Performance evaluation brings forward the outperformance of the proposed IGWO system in terms of energy consumption, execution time and cost, makespan, CPU utilization, and memory utilization. Further, the system attains more comprehensive and better results when compared to the state of art methods.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"30 1","pages":"170 - 179"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inquisitive Genetic-Based Wolf Optimization for Load Balancing in Cloud Computing\",\"authors\":\"Suman Sansanwal, Nitin Jain\",\"doi\":\"10.2478/acss-2023-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cloud remains an active and dominant player in the field of information technology. Hence, to meet the rapidly growing requirement of computational processes and storage resources, the cloud provider deploys efficient data centres globally that comprise thousands of IT servers. Because of tremendous energy and resource utilization, a reliable cloud platform has to be necessarily optimized. Effective load balancing is a great option to overcome these issues. However, loading balancing difficulties, such as increased computational complexity, the chance of losing the client data during task rescheduling, and consuming huge memory of the host, and new VM (Virtual Machine), need appropriate optimization. Hence, the study aims to create a newly developed IG-WA (Inquisitive Genetic–Wolf Optimization) framework that meritoriously detects the optimized virtual machine in an environment. For this purpose, the system utilises the GWO (Grey Wolf Optimization) method with an evolutionary mechanism for achieving a proper compromise between exploitation and exploration, thereby accelerating the convergence and achieving optimized accuracy. Furthermore, the fitness function evaluated with an inquisitive genetic algorithm adds value to the overall efficacy. Performance evaluation brings forward the outperformance of the proposed IGWO system in terms of energy consumption, execution time and cost, makespan, CPU utilization, and memory utilization. Further, the system attains more comprehensive and better results when compared to the state of art methods.\",\"PeriodicalId\":41960,\"journal\":{\"name\":\"Applied Computer Systems\",\"volume\":\"30 1\",\"pages\":\"170 - 179\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acss-2023-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2023-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

云仍然是信息技术领域的一个活跃和主导的参与者。因此,为了满足快速增长的计算过程和存储资源需求,云提供商在全球部署了由数千台IT服务器组成的高效数据中心。由于巨大的能源和资源利用率,一个可靠的云平台必须进行优化。有效的负载平衡是克服这些问题的一个很好的选择。但是,负载平衡方面的困难需要适当的优化,例如计算复杂性的增加、任务重新调度期间丢失客户端数据的可能性以及占用主机和新VM (Virtual Machine)的大量内存。因此,该研究旨在创建一个新开发的IG-WA(好奇遗传狼优化)框架,该框架可以有效地检测环境中优化的虚拟机。为此,系统采用灰狼优化(GWO)方法,采用进化机制,在开发和探索之间实现适当的折衷,从而加快收敛速度,达到最优精度。此外,用探究式遗传算法评估的适应度函数为整体功效增加了价值。性能评估表明,本文提出的IGWO系统在能耗、执行时间和成本、makespan、CPU利用率和内存利用率等方面均优于IGWO系统。此外,与最先进的方法相比,该系统获得了更全面和更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inquisitive Genetic-Based Wolf Optimization for Load Balancing in Cloud Computing
Abstract Cloud remains an active and dominant player in the field of information technology. Hence, to meet the rapidly growing requirement of computational processes and storage resources, the cloud provider deploys efficient data centres globally that comprise thousands of IT servers. Because of tremendous energy and resource utilization, a reliable cloud platform has to be necessarily optimized. Effective load balancing is a great option to overcome these issues. However, loading balancing difficulties, such as increased computational complexity, the chance of losing the client data during task rescheduling, and consuming huge memory of the host, and new VM (Virtual Machine), need appropriate optimization. Hence, the study aims to create a newly developed IG-WA (Inquisitive Genetic–Wolf Optimization) framework that meritoriously detects the optimized virtual machine in an environment. For this purpose, the system utilises the GWO (Grey Wolf Optimization) method with an evolutionary mechanism for achieving a proper compromise between exploitation and exploration, thereby accelerating the convergence and achieving optimized accuracy. Furthermore, the fitness function evaluated with an inquisitive genetic algorithm adds value to the overall efficacy. Performance evaluation brings forward the outperformance of the proposed IGWO system in terms of energy consumption, execution time and cost, makespan, CPU utilization, and memory utilization. Further, the system attains more comprehensive and better results when compared to the state of art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信