关联数据的数据挖掘:过去、现在和未来

Rohit Beniwal, Vikas Gupta, Manish Rawat, Rishabh Aggarwal
{"title":"关联数据的数据挖掘:过去、现在和未来","authors":"Rohit Beniwal, Vikas Gupta, Manish Rawat, Rishabh Aggarwal","doi":"10.1109/ICCMC.2018.8487861","DOIUrl":null,"url":null,"abstract":"Linked Data has emerged as a popular method for representing structured data. One of the prime aims is to convert today’s web of documents into a web of data where the data is machine-readable as well as processable. This research paper focuses on the data mining techniques used for mining the raw data. However, these techniques are cumbersome and can be optimized using Linked Data. Hence, we discuss the data mining techniques with Linked Data that may play a pivotal role in future in extracting meaningful information from unstructured or semi-structured data.","PeriodicalId":6604,"journal":{"name":"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)","volume":"39 1","pages":"1031-1035"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Data Mining with Linked Data: Past, Present, and Future\",\"authors\":\"Rohit Beniwal, Vikas Gupta, Manish Rawat, Rishabh Aggarwal\",\"doi\":\"10.1109/ICCMC.2018.8487861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linked Data has emerged as a popular method for representing structured data. One of the prime aims is to convert today’s web of documents into a web of data where the data is machine-readable as well as processable. This research paper focuses on the data mining techniques used for mining the raw data. However, these techniques are cumbersome and can be optimized using Linked Data. Hence, we discuss the data mining techniques with Linked Data that may play a pivotal role in future in extracting meaningful information from unstructured or semi-structured data.\",\"PeriodicalId\":6604,\"journal\":{\"name\":\"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)\",\"volume\":\"39 1\",\"pages\":\"1031-1035\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMC.2018.8487861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC.2018.8487861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

关联数据已经成为表示结构化数据的一种流行方法。主要目标之一是将今天的文档网络转换为数据网络,其中的数据既可由机器读取,又可由机器处理。本文主要研究用于挖掘原始数据的数据挖掘技术。然而,这些技术很麻烦,可以使用关联数据进行优化。因此,我们讨论了关联数据的数据挖掘技术,这些技术可能在未来从非结构化或半结构化数据中提取有意义的信息方面发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Mining with Linked Data: Past, Present, and Future
Linked Data has emerged as a popular method for representing structured data. One of the prime aims is to convert today’s web of documents into a web of data where the data is machine-readable as well as processable. This research paper focuses on the data mining techniques used for mining the raw data. However, these techniques are cumbersome and can be optimized using Linked Data. Hence, we discuss the data mining techniques with Linked Data that may play a pivotal role in future in extracting meaningful information from unstructured or semi-structured data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信