{"title":"基于adaboost的人体动作识别算法","authors":"Nabil Zerrouki, F. Harrou, Ying Sun, A. Houacine","doi":"10.1109/INDIN.2017.8104769","DOIUrl":null,"url":null,"abstract":"This paper presents a computer vision-based methodology for human action recognition. First, the shape based pose features are constructed based on area ratios to identify the human silhouette in images. The proposed features are invariance to translation and scaling. Once the human body features are extracted from videos, different human actions are learned individually on the training frames of each class. Then, we apply the Adaboost algorithm for the classification process. We assessed the proposed approach using the UR Fall Detection dataset. In this study six classes of activities are considered namely: walking, standing, bending, lying, squatting, and sitting. Results demonstrate the efficiency of the proposed methodology.","PeriodicalId":6595,"journal":{"name":"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)","volume":"28 1","pages":"189-193"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaboost-based algorithm for human action recognition\",\"authors\":\"Nabil Zerrouki, F. Harrou, Ying Sun, A. Houacine\",\"doi\":\"10.1109/INDIN.2017.8104769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a computer vision-based methodology for human action recognition. First, the shape based pose features are constructed based on area ratios to identify the human silhouette in images. The proposed features are invariance to translation and scaling. Once the human body features are extracted from videos, different human actions are learned individually on the training frames of each class. Then, we apply the Adaboost algorithm for the classification process. We assessed the proposed approach using the UR Fall Detection dataset. In this study six classes of activities are considered namely: walking, standing, bending, lying, squatting, and sitting. Results demonstrate the efficiency of the proposed methodology.\",\"PeriodicalId\":6595,\"journal\":{\"name\":\"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"28 1\",\"pages\":\"189-193\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2017.8104769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2017.8104769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaboost-based algorithm for human action recognition
This paper presents a computer vision-based methodology for human action recognition. First, the shape based pose features are constructed based on area ratios to identify the human silhouette in images. The proposed features are invariance to translation and scaling. Once the human body features are extracted from videos, different human actions are learned individually on the training frames of each class. Then, we apply the Adaboost algorithm for the classification process. We assessed the proposed approach using the UR Fall Detection dataset. In this study six classes of activities are considered namely: walking, standing, bending, lying, squatting, and sitting. Results demonstrate the efficiency of the proposed methodology.