{"title":"用数学方法描述二维行星轨道","authors":"Ramanakumar V","doi":"10.4172/2168-9679.1000414","DOIUrl":null,"url":null,"abstract":"This article describes use of Mathcad mathematical package to solve problem of the motion of two, three and four material points under the influence of gravitational forces on the planar motion and in three-dimensional space. The limits of accuracy of numerical methods for solving ordinary differential equations are discussed. Usual concept of Kepler hours with uneven movement arrows in planet. Projectile motion may be thought of as an example of motion in space-that is to say, of three-dimensional motion rather than motion along a line, or one-dimensional motion. In a suitably defined system of Cartesian coordinates, the position of the projectile at any instant may be specified by giving the values of its three coordinates, x(t), y(t), and z(t). Citation: Ramanakumar V (2018) Mathematically Describing Planetary Orbits in Two Dimensions. J Appl Computat Math 7: 414. doi: 10.4172/21689679.1000414","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"123 25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematically Describing Planetary Orbits in Two Dimensions\",\"authors\":\"Ramanakumar V\",\"doi\":\"10.4172/2168-9679.1000414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes use of Mathcad mathematical package to solve problem of the motion of two, three and four material points under the influence of gravitational forces on the planar motion and in three-dimensional space. The limits of accuracy of numerical methods for solving ordinary differential equations are discussed. Usual concept of Kepler hours with uneven movement arrows in planet. Projectile motion may be thought of as an example of motion in space-that is to say, of three-dimensional motion rather than motion along a line, or one-dimensional motion. In a suitably defined system of Cartesian coordinates, the position of the projectile at any instant may be specified by giving the values of its three coordinates, x(t), y(t), and z(t). Citation: Ramanakumar V (2018) Mathematically Describing Planetary Orbits in Two Dimensions. J Appl Computat Math 7: 414. doi: 10.4172/21689679.1000414\",\"PeriodicalId\":15007,\"journal\":{\"name\":\"Journal of Applied and Computational Mathematics\",\"volume\":\"123 25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9679.1000414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mathematically Describing Planetary Orbits in Two Dimensions
This article describes use of Mathcad mathematical package to solve problem of the motion of two, three and four material points under the influence of gravitational forces on the planar motion and in three-dimensional space. The limits of accuracy of numerical methods for solving ordinary differential equations are discussed. Usual concept of Kepler hours with uneven movement arrows in planet. Projectile motion may be thought of as an example of motion in space-that is to say, of three-dimensional motion rather than motion along a line, or one-dimensional motion. In a suitably defined system of Cartesian coordinates, the position of the projectile at any instant may be specified by giving the values of its three coordinates, x(t), y(t), and z(t). Citation: Ramanakumar V (2018) Mathematically Describing Planetary Orbits in Two Dimensions. J Appl Computat Math 7: 414. doi: 10.4172/21689679.1000414