用数学方法描述二维行星轨道

Ramanakumar V
{"title":"用数学方法描述二维行星轨道","authors":"Ramanakumar V","doi":"10.4172/2168-9679.1000414","DOIUrl":null,"url":null,"abstract":"This article describes use of Mathcad mathematical package to solve problem of the motion of two, three and four material points under the influence of gravitational forces on the planar motion and in three-dimensional space. The limits of accuracy of numerical methods for solving ordinary differential equations are discussed. Usual concept of Kepler hours with uneven movement arrows in planet. Projectile motion may be thought of as an example of motion in space-that is to say, of three-dimensional motion rather than motion along a line, or one-dimensional motion. In a suitably defined system of Cartesian coordinates, the position of the projectile at any instant may be specified by giving the values of its three coordinates, x(t), y(t), and z(t). Citation: Ramanakumar V (2018) Mathematically Describing Planetary Orbits in Two Dimensions. J Appl Computat Math 7: 414. doi: 10.4172/21689679.1000414","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"123 25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematically Describing Planetary Orbits in Two Dimensions\",\"authors\":\"Ramanakumar V\",\"doi\":\"10.4172/2168-9679.1000414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes use of Mathcad mathematical package to solve problem of the motion of two, three and four material points under the influence of gravitational forces on the planar motion and in three-dimensional space. The limits of accuracy of numerical methods for solving ordinary differential equations are discussed. Usual concept of Kepler hours with uneven movement arrows in planet. Projectile motion may be thought of as an example of motion in space-that is to say, of three-dimensional motion rather than motion along a line, or one-dimensional motion. In a suitably defined system of Cartesian coordinates, the position of the projectile at any instant may be specified by giving the values of its three coordinates, x(t), y(t), and z(t). Citation: Ramanakumar V (2018) Mathematically Describing Planetary Orbits in Two Dimensions. J Appl Computat Math 7: 414. doi: 10.4172/21689679.1000414\",\"PeriodicalId\":15007,\"journal\":{\"name\":\"Journal of Applied and Computational Mathematics\",\"volume\":\"123 25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9679.1000414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了利用Mathcad数学软件包求解两、三、四个质点在重力作用下的平面运动和三维空间中的运动问题。讨论了求解常微分方程的数值方法的精度极限。用行星上不均匀运动箭头表示开普勒小时的通常概念。抛射运动可以看作是空间运动的一个例子,也就是说,抛射运动是三维运动,而不是沿直线运动或一维运动。在一个适当定义的笛卡尔坐标系中,弹丸在任何时刻的位置可以通过给出它的三个坐标x(t)、y(t)和z(t)的值来表示。引用本文:Ramanakumar V(2018)《二维行星轨道的数学描述》。[J]计算机数学,7:414。doi: 10.4172/21689679.1000414
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematically Describing Planetary Orbits in Two Dimensions
This article describes use of Mathcad mathematical package to solve problem of the motion of two, three and four material points under the influence of gravitational forces on the planar motion and in three-dimensional space. The limits of accuracy of numerical methods for solving ordinary differential equations are discussed. Usual concept of Kepler hours with uneven movement arrows in planet. Projectile motion may be thought of as an example of motion in space-that is to say, of three-dimensional motion rather than motion along a line, or one-dimensional motion. In a suitably defined system of Cartesian coordinates, the position of the projectile at any instant may be specified by giving the values of its three coordinates, x(t), y(t), and z(t). Citation: Ramanakumar V (2018) Mathematically Describing Planetary Orbits in Two Dimensions. J Appl Computat Math 7: 414. doi: 10.4172/21689679.1000414
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信