{"title":"DCUDA:支持实时迁移的动态GPU调度","authors":"Fan Guo, Yongkun Li, John C.S. Lui, Yinlong Xu","doi":"10.1145/3357223.3362714","DOIUrl":null,"url":null,"abstract":"In clouds and data centers, GPU servers which consist of multiple GPUs are widely deployed. Current state-of-the-art GPU scheduling algorithm are \"static\" in assigning applications to different GPUs. These algorithms usually ignore the dynamics of the GPU utilization and are often inaccurate in estimating resource demand before assigning/running applications, so there is a large opportunity to further load balance and to improve GPU utilization. Based on CUDA (Compute Unified Device Architecture), we develop a runtime system called DCUDA which supports \"dynamic\" scheduling of running applications between multiple GPUs. In particular, DCUDA provides a realtime and lightweight method to accurately monitor the resource demand of applications and GPU utilization. Furthermore, it provides a universal migration facility to migrate \"running applications\" between GPUs with negligible overhead. More importantly, DCUDA transparently supports all CUDA applications without changing their source codes. Experiments with our prototype system show that DCUDA can reduce 78.3% of overloaded time of GPUs on average. As a result, for different workloads consisting of a wide range applications we studied, DCUDA can reduce the average execution time of applications by up to 42.1%. Furthermore, DCUDA also reduces 13.3% energy in the light load scenario.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"DCUDA: Dynamic GPU Scheduling with Live Migration Support\",\"authors\":\"Fan Guo, Yongkun Li, John C.S. Lui, Yinlong Xu\",\"doi\":\"10.1145/3357223.3362714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In clouds and data centers, GPU servers which consist of multiple GPUs are widely deployed. Current state-of-the-art GPU scheduling algorithm are \\\"static\\\" in assigning applications to different GPUs. These algorithms usually ignore the dynamics of the GPU utilization and are often inaccurate in estimating resource demand before assigning/running applications, so there is a large opportunity to further load balance and to improve GPU utilization. Based on CUDA (Compute Unified Device Architecture), we develop a runtime system called DCUDA which supports \\\"dynamic\\\" scheduling of running applications between multiple GPUs. In particular, DCUDA provides a realtime and lightweight method to accurately monitor the resource demand of applications and GPU utilization. Furthermore, it provides a universal migration facility to migrate \\\"running applications\\\" between GPUs with negligible overhead. More importantly, DCUDA transparently supports all CUDA applications without changing their source codes. Experiments with our prototype system show that DCUDA can reduce 78.3% of overloaded time of GPUs on average. As a result, for different workloads consisting of a wide range applications we studied, DCUDA can reduce the average execution time of applications by up to 42.1%. Furthermore, DCUDA also reduces 13.3% energy in the light load scenario.\",\"PeriodicalId\":91949,\"journal\":{\"name\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3357223.3362714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357223.3362714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DCUDA: Dynamic GPU Scheduling with Live Migration Support
In clouds and data centers, GPU servers which consist of multiple GPUs are widely deployed. Current state-of-the-art GPU scheduling algorithm are "static" in assigning applications to different GPUs. These algorithms usually ignore the dynamics of the GPU utilization and are often inaccurate in estimating resource demand before assigning/running applications, so there is a large opportunity to further load balance and to improve GPU utilization. Based on CUDA (Compute Unified Device Architecture), we develop a runtime system called DCUDA which supports "dynamic" scheduling of running applications between multiple GPUs. In particular, DCUDA provides a realtime and lightweight method to accurately monitor the resource demand of applications and GPU utilization. Furthermore, it provides a universal migration facility to migrate "running applications" between GPUs with negligible overhead. More importantly, DCUDA transparently supports all CUDA applications without changing their source codes. Experiments with our prototype system show that DCUDA can reduce 78.3% of overloaded time of GPUs on average. As a result, for different workloads consisting of a wide range applications we studied, DCUDA can reduce the average execution time of applications by up to 42.1%. Furthermore, DCUDA also reduces 13.3% energy in the light load scenario.